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1 Introduction

Many complex diseases, like various types of cancer, type 2 diabetes, and psy-
chiatric disorders, are known to be associated with a number of genetic factors
and gene expression profiles. However, the current treatments of complex diseases
often fail to work well for all patients. Some patients may respond differently
to the same treatment, and may suffer from adverse side effects differently. The
genome and transcriptome of an individual may affect the susceptibility to develop
a disease and the variation in the responses to treatments. Identifying genomic and
transcriptomic risk factors thus can help us to better understand the pathogenesis
of a disease. It is also the very first step toward the development of successful
prevention and intervention strategies. In addition, it may shed light on genomic and
transcriptomic markers that may aid the decisions of precision medicine to improve
the treatment efficiency and reduce the side effects. Here, we focus on developing a
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novel statistical model to identify the genetic factors and genes that are associated
with complex diseases.

Genome-wide association study (GWAS) is a popular approach to identifying
genetic variants related to a complex disease [8, 18, 40]. Single nucleotide polymor-
phism (SNP) is among the most common types of genetic variations and is the basic
unit of investigation in many GWASs. There are millions of SNPs in the human
genome, accounting for a large portion of the genomic elements that affect many
phenotypes. According to the NHGRI GWAS Catalog [7], GWASs have identified
over 171,000 associations as candidate risk factors in complex diseases by the year
2020. Although the traditional GWAS methods based on single-marker analysis
have been successful, they fail to account for much of the heritability of phenotypes.
One limitation is related to multiple testing correction, which is required to control
the overall type I error when testing a large number of hypotheses. To improve
the power of detection, researchers have developed pathway-based approaches in
GWAS, which allow one to take into account multiple genetic variants in different
loci that interact with one another. The pathway-based analysis offers an opportunity
to collectively evaluate genetic variants so that the dependence among themselves
can be considered in the model. Also, pathway-based studies can include markers
whose effects are small and thus are hard to detect through traditional single-marker
tests.

A number of pathway-based approaches have been proposed in the literature.
For example, Luo et al. [30] proposed a two-stage (gene and pathway) GWAS.
Chen et al. [12] proposed a supervised principal component analysis [2] to test
the association between a group of SNPs and variation in disease outcome. For
association tests with pathways in the presence of both common and rare variants,
Pan et al. [37] extended the sum of powered score tests [36], originally developed
for analysis of rare variants, to a pathway-based test that is data-adaptive at
both the gene and the SNP levels. Note that the widely used kernel machine
tests [48, 49] can be regarded as special cases of the sum of powered score
tests. ICSNPathway [45] was developed to identify candidate causal SNPs and
their corresponding candidate causal pathways. This approach integrates linkage
disequilibrium analysis, functional SNP annotation, and pathway-based analysis.

Other than GWAS, gene expression analysis has been widely employed to
identify genes associated with disease. Gene expression measures the expression
level of mRNA that is related to the protein abundance. The regulation variation
of gene expression plays a key role in shaping phenotypic differences among indi-
viduals, and as a result, it is very likely to influence disease susceptibility [13, 34].
For example, gene expression profiles from cancer and normal cells are used for
comparison and reveal new disease entities [39]. Also, the involvements of gene
expression are found in risk loci of the inflammatory bowel disease [32]. Single-
gene based analysis has the limitation similar to that of the GWAS, namely, the lack
of statistical power when a large number of hypotheses are being tested simulta-
neously. Many studies have proposed to incorporate the topological structures of
biological pathways with gene expression data to identify differentially expressed
genes. Similar to disease association status of genes, the genes that interact with
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others tend to have similar expression status (differentially expressed and equally
expressed) as well. Zhi et al. [51] used a discrete MRF to model the dependency
of the differential expression patterns of genes in the network. Some researchers
have extended the transitional enrichment analysis to topology-based enrichment
approaches to identify pathways or gene sets that are significantly enriched with
differentially expressed genes. Signaling pathway impact analysis (SPIA) [46]
integrates the evidence of differentially expressed genes and topology structure of a
signaling pathway. PathNet [15] is another enrichment method considering topology
information of biological pathways.

There are many types of pathways, and most well-known ones include metabolic,
gene regulatory, and signal transduction pathways. An example of a biological
pathway is shown in Fig. 1. Metabolic pathways [50] are mainly concerned with a
series of biochemical reactions, especially the chemical modification of the small
molecule substrates of enzymes. For example, glucose is broken apart during
cellular respiration to produce adenosine triphosphate (ATP), which is an energy
source for the cell’s functions. Gene-regulatory pathways control what genes are
expressed and the expression levels of mRNA and proteins. Signal transduction
pathways [25] transmit signals from cell’s exterior to its interior. For instance,
a chemical signal from outside the cell might direct the cell to produce protein
inside the cell. Different pathways work together properly so that human body can
function well and stay healthy. Much knowledge about biological pathways has been
accumulated over the past decades. Consequently, a number of online resources for
biological pathways are available. These knowledge bases are extensive, including

Fig. 1 p53 signaling pathway obtained from KEGG. The pathway shows the various genes, gene
products, the interactions between genes, the directions of the signal propagation, and many other
things
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Kyoto Encyclopedia of Genes and Genomes (KEGG) [23, 24], WikiPathways [44],
Reactome [21], and Pathway Commons [41].

The success of pathway-based approaches has been demonstrated in different
studies. However, most pathway-based approaches utilize only partial information,
that is, a pathway is treated as a list of genes and its topology structure is not
considered. Indeed, a biological pathway describes a collection of interactions of
molecules in cells, like mRNA, proteins, and metabolites, which coordinate with
one another to perform cell functions or to direct cell responses to environmental
changes. The topological structure of a biological pathway can be very informative.
It reveals the interactions between genes, and it can help to improve the power
of detection and to better understand risk factors of the disease. Different studies
have demonstrated that incorporating the topological structure of a single biological
pathway can improve the power to detect disease-related genes [10, 19, 22, 51].
Chen et al. [10] showed that the neighboring genes tend to have similar disease
association statues. The proposed method introduced a Markov random field to
model the topology structures of biological pathways. Hou et al. [20] proposed a
novel guilt-by-rewiring principle, utilizing network information to prioritize disease
genes. Freytag et al. [17] extended a logistic kernel machine into a network-based
kernel machine test so that the topology structure of a biological pathway can be
included in the model. Liu et al. [28] proposed the partial neighborhood selection
(PNS) algorithm to estimate the gene dependence network, and a hidden Markov
random field (HMRF) was adopted to combine the estimated network with genetic
association scores.

The aforementioned studies only consider a single biological pathway. However,
a single biological pathway only contains partial information about genes and
interactions among genes. Genes participate in various biological processes simulta-
neously and they can interact in many different ways. A pathway usually describes
very specific biological functions. As a result, genes, especially important ones,
tend to interact with each other in several pathways. Therefore, combining multiple
pathways can provide a more complete graph of the gene–gene interactions. For
instance, genes IL23A and IL23R interact with each other in the Inflammatory
Bowel Disease Pathway and Jak-STAT Signaling Pathway. Integration of these
pathways can reveal and reinforce the effects of critical gene–gene interactions
that play key roles in these pathways. The question arises as to whether or not we
can further improve the detection power via consideration of multiple biological
pathways simultaneously. Not much effort has been devoted to this important
problem, although a very limited number of previous studies have shown the
success of integrating multiple biological pathways. Wei and Pan [47] proposed
a method to incorporate multiple gene networks, e.g., co-expression networks and
functional coupling networks, with diverse genomic data to identify target genes
of a transcription factor. They used a Markov random field-based mixture joint
model (MRF-MJM) to merge gene networks. They assumed that the contribution
of each gene network is additive and that a weight is assigned to each individual
network. A larger weight indicates that there are more neighboring genes with
similar status. In this method, the way to utilize multiple biological pathways
is to sum over the contribution of each gene network. Their method focuses on
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identifying the regulatory target genes of a transcription factor. Bokanizad et al. [6]
considered another approach to combining different biological pathways. Multiple
biological pathways are linked together through a single gene, called interface gene,
that connects two biological pathways through biological interactions and signal
transduction.

Here, we propose to combine multiple biological pathways based on the common
genes shared among different biological pathways. When we merge two or more
biological pathways, the topological structures of the pathways will be preserved.
Also, combining different biological pathways based on the common genes they
share can account for the interactions among pathways. To model the topological
structures of pathways, a probabilistic graphical model called Markov random
field [10, 33] is employed. An MRF is a probabilistic measure assigned to an
undirected graph. In the graph, genes are nodes and interactions are denoted by
edges. One advantage of MRF is that it has the ability to capture the conditional
independence among variables based on the graph topology. Thus, it can provide
a compact and natural representation of the joint probability distribution of the set
of variables in the graph. Another advantage of the MRF is that it can be used to
control the false discovery rate in the presence of dependent relationships between
genes [27]. Since MRF is capable of modeling the dependent structure in data, it
has been applied to a wide range of fields. For example, Lin et al. [26] estimated
the differentially expressed genes in the mouse transcriptome data, using a Markov
random field to model the layer similarity, temporal dependency, and the similarity
between sexes.

The rest of this chapter is organized as follows. Section 2 introduces our proposed
methods. It includes the basic concepts that are relevant to the graph theory, a Gibbs
measure assigned to the graph serving as a prior probability, different ways of setting
weights to nodes and edges, the likelihood function, and the computational method.
Simulation studies are presented in Sect. 3. A small-size graph and a relatively
large graph are employed to show that combining multiple biological pathways can
further improve the power of detection and control the false positive rate. Section 4
shows a case study that uses lung cancer data to demonstrate the performances of
the proposed methods. Finally, Sect. 5 summarizes our methods with a discussion
and possible future work.

2 Method

2.1 MRF Modeling of Biological Pathways

Undirected Graphs and Biological Pathways

A biological pathway consists of a collection of interacting molecules, which can
be modeled as a graph through the use of graph theory [3, 38]. We will start with
introducing some basic concepts in graph theory. A graph, defined as G = (V, E),
is a collection of nodes that are connected by edges, where
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Fig. 2 Undirected graph and directed graph

V = {1, 2, . . . , n}
E = {< i, j >: i and j are directly connected}.

If the edges do not have directions, the graph is called an undirected graph;
otherwise, it is a directed graph (see Fig. 2). There are three key concepts in graph
theory that will be useful to describe the structure of a graph. The first is the
neighborhood of a node ν, which, by definition, is a subset of all nodes that are
directly connected to ν by an edge. For the ith node in V , we define the following
terms:

Ni = {j :< i, j >∈ E},
di = |Ni |,

Eij = the number of edges connecting node i and node j,

Ei =
∑

j∈Ni

Eij ,

where Ni is a set of neighbors of node i, di is the number of neighbors that node
i has, Eij is the number of edges linking node i and node j , and Ei is the number
of total edges of node i. Note that di = Ei if only one edge is present between any
pair of nodes. In general, di ≤ Ei because multiple edges are allowed between node
i and any of its neighbors, like in a combined graph to be discussed in Sect. 2.2. A
complete graph is a simple undirected graph in which every pair of distinct nodes
is connected by a unique edge. A clique is a complete subgraph of G. A clique of
size k is called a k-clique (kth order clique). Each individual node is corresponding
to a 1-clique. A pair of nodes can form a 2-clique and all triangles are 3-cliques.
Examples are given in Fig. 3. In Fig. 3, there are six 1-cliques {1, 2, 3, 4, 5, 6}, six
2-cliques {(1, 2), (1, 3), (3, 6), (4, 5), (4, 6)}, and one 3-clique {(4, 6, 5)}. Note that
since V is a set of nodes and E is a set of edges, from the perspective of cliques, V
and E can also be treated as a set of 1-cliques and a set of 2-cliques, respectively.

Biological pathways represent the biological reaction and interaction network
in a cell. Genes, proteins, and other molecules are involved and interact with each
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Fig. 3 Cliques

Fig. 4 Inflammatory Bowel Disease Pathway is represented as an UG (image is generated by
Cytoscape [42])

other in a biological pathway. In our study, only gene–gene interactions are taken
into consideration and we use an undirected graph (UG) to represent a biological
pathway. An example of such a graph is shown in Fig. 4.

In the graph, genes are treated as nodes and gene–gene interactions are edges.
Define Si as the true status of gene i:

Si = +1 if gene i is associated with disease or is differentially expressed,

Si = −1 if gene i is not associated with disease or is not differentially expressed.

Hereafter,±1 are referred to as labels of nodes. Let S = (S1, . . . , Sn) be the labeling
of V . Thus, S is a spatial random vector whose element may be correlated to each
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other. Each node can be labeled as either+1 or−1. So, there are 2n unique labelings
of the graph, and each unique labeling of the graph is also called a configuration.
The ultimate goal is to infer the value of S based on the underlying topological
structures of biological pathways and observed data from biological experiments.

In practice, genes do not function in isolation. For complex diseases, multiple
genes have been identified to collectively account for clinical phenotypes [29].
Moreover, the same pair of genes can interact in different biological pathways,
which motivates us to combine multiple biological pathways to gather more
information about gene–gene interactions. LetP denote a set of g distinct biological
pathways:

P = {P1, P2, . . . , Pg},

where Pl = (Vl , El ), l = 1, · · · , g.
Multiple biological pathways are combined into a big pathway, which will be

integrated with genomic and transcriptomic data later. We use an intuitive approach
based on the overlapping genes among the pathways to combine multiple biological
pathways. As we mentioned earlier, genes may appear in different biological
pathways. Based on the common genes they share, these biological pathways can
be combined. Fig. 5 shows an example of combining two biological pathways.

Note that some pairs of genes are linked by multiple edges in the combined graph.
The number of edges denotes how many biological pathways that the corresponding

Fig. 5 An example of combining two biological pathways. Overlapping nodes in Graph A and
Graph B are nodes (1, 2, 3, 4, 5, 6). Based on the shared nodes, Graphs A and B are integrated to
a combined graph
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genes interact with each other. In our study, we treat the multiple edges between
neighboring genes as weighted single edge. The specific ways to assign weights to
the weighted single edges will be discussed in section “A Nearest Gibbs Measure”.

Genes interact with each other in the biological pathway. In the other words,
there exist dependencies among the genes. In order to describe the topological
structure and the dependencies, a Markov random field is employed [10], as
will be introduced in the following section. An MRF not only describes the
structures of biological pathways but also allows us to define a joint distribution
for interdependent genes.

A Nearest Gibbs Measure

Speaking about the joint distribution of genes, we need to assign a probability
measure to the combined biological pathway. The probability measure should reflect
that the neighboring genes tend to have similar labels, and it should also quantify the
effects of edges that connect the neighboring genes. Following [10], we can achieve
both goals with one probability measure, a nearest Gibbs measure, as follows:

P(S|θ0) = 1

z(θ0)
exp

⎧
⎨

⎩h
∑

i∈V
I1(Si) + τ0

∑

<i,j>∈E
(ωi + ωj )I−1(Si)I−1(Sj )

+τ1
∑

<i,j>∈E
(ωi + ωj )I1(Si)I1(Sj )

⎫
⎬

⎭ , (1)

where θ0 = (h, τ1, τ0), I1(·) and I−1(·) are indicator functions, and z(θ0) is a
normalizing function that is the sum over all 2n possible configurations:

z(θ0) =
∑

S

exp

⎧
⎨

⎩h
∑

i∈V
I1(Si) + τ0

∑

<i,j>∈E
(ωi + ωj )I−1(Si)I−1(Sj )

+τ1
∑

<i,j>∈E
(ωi + ωj )I1(Si)I1(Sj )

⎫
⎬

⎭ . (2)

Note that it is computationally prohibitive to evaluate z(θ0) when n is large. For
instance, there are over 10 billion possible configurations when a graph has 30
nodes. Here, τ0 and τ1 assign weights to the 2-cliques in which both nodes are
negative and positive genes, respectively; ωi is a function of di and Ei , reflecting a
weight we assign to node i. The details of the function ωi will be described later in
Sect. 2.2 when we define methods of combining biological pathways.

The probability measure in (1) directly considers the topological structure of a
pathway. The first term is the sum over all the 1-cliques; the second sum and the
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third sum are taken over all the 2-cliques that contain both of two nodes labeled
as −1 and labeled as +1, respectively. Positive τ0 and τ1 will put more weights
on the 2-cliques in which all of the included nodes have the same labels, which is
desirable in our context. The parameter h determines the marginal probability of
Si when τ0 = τ1 = 0, i.e., if all nodes are isolated, which indicates that they are
independent:

P(Si = 1|h, τ0 = τ1 = 0) = exp(h)

exp(h) + 1
.

There is an attractive feature of the Gibbs measure, that is, a sample from Gibbs
measure has the local Markov property. This property defines an MRF on S, which
by definition is Pr(Si |Sν−i ) = Pr(Si |SNi

), where V − i denotes all the nodes but i,
and Ni is the set of all immediate neighbors of node i. This property can be asserted
by the Hammersley–Clifford theorem [5]. We use an MRF to model the interactions
between genes that are directly linked.

Theorem 1 (Hammersley–Clifford Theorem) The spatial random vector, S,
under the Gibbs measure, is a Markov random field and thus satisfies

P(Si |Sν−i , θ0) = P(Si |SNi
, θ0).

Also, the conditional distribution of an MRF has a logistic regression form as
shown below [10]:

logit(P(Si |SNi
, θ0)) = h − τ0

∑

<i,j>∈E
(ωi + ωj )I−1(Si)I−1(Sj )

+τ1
∑

<i,j>∈E
(ωi + ωj )I1(Si)I1(Sj ), i = 1, . . . , n. (3)

Equivalently, (3) can be written as a system of linear equations:

logit(P(Si |SNi
, θ0)) = βi0 + βi1S1 + · · · + βinSn,

i = 1, . . . , n, (4)

where

βi0 = h

βij =
{
0 if i = j or < i, j >�∈ E
(ωi + ωj ){τ1I1(Sj ) + τ0I−1(Sj )} if < i, j >∈ E .

The Markov property implies that the conditional distribution of Si , given all
the other node labels in the network, is equivalent to the conditional distribution of
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Si given all its immediate neighbors. If Si and Sj are not neighbors, then they are
conditionally independent. Now, we give an interpretation of ωi in (1). From (4),
it is obvious that the conditional probability of Si depends on the weighted sum of
its neighbors. Moreover, Si has different weights depending on the sizes of cliques
used to describe the structure of the graph in the probability measure.

2.2 Combine Multiple Pathways

In Eq. (1), the weight of Si is

(ωi + ωj )τ1 if Si = Sj = +1,

(ωi + ωj )τ0 if Si = Sj = −1.

Here, (ωi+ωj ) is the sum of weights over all the nodes in the same 2-cliques. Recall
that in the combined graph shown in Fig. 5, a pair of nodes can be linked by more
than one edge, which may indicate the strength of relation between the neighboring
nodes. The weights of nodes and edges are related to the number of neighbors and
edges that nodes have in the combined graph. Next, we will present four different
probability measures in which ωi and the weights of edges are set in different ways.

Method 1 In this method, if two or more edges are between two neighboring genes,
we only count them once. We set ωi to be the logarithm of di , the number of
neighbors of Si . As a result, a gene that interacts with many other genes in the
pathway has a large weight because it may play a central role in a biological process,
and thus it is likely to have a large influence. However, a gene with one neighbor is
assigned with 0. Thus, its effect has been reduced. The probability measure and the
logistic form of the first method are identical to the equations shown in (1) and (3),
respectively.

In a combined graph, if multiple edges are present between a pair of nodes, one
could assign a weight to this link, in addition to the weights (ωi + ωj ) that are
based on the nodes. In Methods 2 through 4 below, we define the weight of the link
between nodes i and j as (Eij )

2 · (AE/T E), where Eij is the number of edges
linking nodes i and j ,

AE =

∑

<i,′j ′>∈E1
E2

i′j ′ + · · · +
∑

<i,′j ′>∈Eg

E2
i′j ′

g
,

T E =
∑

<i,′j ′>∈ECP

E2
i′j ′, ECP denotes the edge set of the combined pathway.

Note that Eij , the number of edges between two nodes in the combined pathway,
never decreases as more pathways are added. To regularize the growth of the edge
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weights, we multiply (Eij )
2 by a normalizing factor (AE/T E). The probability

measure of S thus becomes

P(S|θ0)= 1

z(θ0)
exp

⎧
⎨

⎩h
∑

i∈VCP

I1(Si)+τ0
∑

<i,j>∈ECP

(ωi+ωj )I−1(Si)I−1(Sj )E
2
ij (

AE

T E
)

+τ1
∑

<i,j>∈ECP

(ωi+ωj )I1(Si)I1(Sj )E
2
ij

(
AE

T E

)⎫
⎬

⎭ . (5)

The above probability measure also defines an MRF. The corresponding logistic
form is

logit(P(Si |SNi
, θ0)) = h − τ0

∑

<i,j>∈ECP

(ωi + ωj )I−1(Si)I−1(Sj )E
2
ij

(
AE

T E

)

+τ1
∑

<i,j>∈ECP

(ωi + ωj )I1(Si)I1(Sj )E
2
ij

(
AE

T E

)
,

i = 1, . . . , n. (6)

The system of linear equations of (6) is

logit(P(Si |SNi
, θ0)) = βi0 + βi1S1 + · · · + βinSn,

i = 1, . . . , n, (7)

where

βi0 = h

βij =
{
0 if i = j or < i, j >�∈ ECP

(ωi + ωj ){τ1I1(Sj ) + τ0I−1(Sj )}E2
ij (

AE
T E

) if < i, j >∈ ECP .

Methods 2 through 4 differ in the definition of ωi , the weight assigned to node i.
The motivation is to give more credit to the nodes that have more neighbors or more
total number of edges in the combined graph.

Method 2 ωi = log(
Ei

g
), where Ei is the total number of edges of node i.

Method 3 ωi = log(di), where di is the size of neighborhood of node i.

Method 4 ωi = log(Ei).

The probability measures in (1) and (5) both define an MRF that can be applied
to describe the pathway topology. The MRF will be treated as a prior distribution
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under a Bayesian model to help us integrate the topological structure of biological
pathways and prior biology knowledge in the Bayesian framework later (the details
of Bayesian framework will be shown in Sect. 2.4).

2.3 Likelihood Function

We follow the method proposed by Chen et al. [10] to form a likelihood function.
The evidence about disease association status or DE status, which is gathered from
biological experiments, can be summarized by p-values at gene level. For gene i,
its p-value can be converted to a response variable yi through

yi = �−1(1 − pi),

where pi is the p-value and �(·) is the cumulative distribution function ofN (0, 1).
Note that a small value of pi corresponds to a large value of yi . Assume yi are
conditionally independent given S, the status of all genes. The null hypothesis is
that the gene is unrelated to the disease. Under the null case where Si = −1,
the distribution of yi is standard normal distribution. Therefore, the density of yi

is f0(yi) ∼ N (0, 1). When the alternative hypothesis is true, that is, S = +1,
the distribution of yi is assumed to follow a normal distribution with the mean μi

and the variance σ 2
i , where μi and σi are unknown. To account for the variations

of μi and σi , prior distributions need to be assigned to μi and σi . We employ

conjugate priorsμi |σ 2
i ∼ N (μ̄,

σ 2
i

a
) and σ 2

i ∼ Inverse Gamma(
ν

2
,
νd

2
) for efficient

computations. Define θ1 = (μ̄, a, ν, d) and y = (y1, . . . , yn). Under this prior
setting, the marginal density of yi is

f1(yi |Si = 1, θ1) =
∫ ∫

1√
2πσ 2

i

exp[−(yi − μi)
2

2σ 2
i

]
√

a√
2πσ 2

i

exp

[
−a(yi − μ̄)2

2σ 2
i

]

× (νd/2)ν/2


(ν/2)
(σ−2

i
)ν/2−1 exp

[
−(σ−2

i
)
νd

2

]
dμid(σ−2

i
)

=
∫

1√
2π a+1

a σ 2
i

exp[−a(yi − μ̄)2

2(a + 1)σ 2
i

] (νd/2)
ν
2


(ν/2)
(σ−2

i
)ν/2−1 exp

[−νdσ−2
i

2

]
d(σ−2

i
)

= 1√
2π

√
a√

a + 1

(νd/2)
ν
2


(ν/2)

∫
(σ−2

i
)

ν+1
2 exp

[
−σ 2

i {νd

2
+ a(yi − μ̄)2

2(a + 1)
}
]

d(σ−2
i

)

= 1√
2π

√
a√

a + 1

(νd/2)ν/2


(ν/2)

(

ν + 1

2
) · {νd

2
+ 1

2

a

a + 1
(y − μ̄)2}−

(1 + ν)

2

= π−1/2(νd)ν/2
√

a√
a + 1


((ν + 1)/2)


(ν/2)

(
a

a + 1
(yi − μ̄2 + νd)

)−(1+ν)/2
. (8)



444 Y. Cao et al.

Therefore, the likelihood function of y is

f (y|S, θ1) =
∏

j :Sj =−1

f0(yj ) ×
∏

j :Sj =+1

f1(yj |Sj = 1, θ1). (9)

2.4 Posterior Probability Under Bayesian Framework

Under a Bayesian framework, the MRF is the prior probability describing the
topological structures of the biological pathways, and the likelihood function in
Eq. (9) presents the evidence from biological experiments. Thus, the posterior
probability of S, given the observed data y, is

P(S|y, θ0, θ1) = f (y|S, θ1)P(S|θ0)∑

S

f (y|S, θ1)P(S|θ0)

∝ f (y|S, θ1)P(S|θ0).
(10)

Recall that the prior probability introduced in Sect. 2.1 defines an MRF and has a
nice conditional probability. Similar to the prior probability, the posterior probability
defines an MRF as well. For node i,

P(Si = +1|y, Sν−i , θ0, θ1) ∝ f1(yi |θ1)P(Si = +1|Sν−i , θ0)

= f1(yi |θ1)P(Si = +1|SNi
, θ0).

(11)

The conditional posterior distribution of Si , given all other nodes, only depends on
its neighbors, which means that the posterior distribution leads to an MRF [10]. We
use method 1 as an example to show the logistic form of the conditional distribution
of Si :

logit(P(Si |y, SNi
, θ0, θ1)=h + logLR(yi; θ1)−τ0

∑

<i,j>∈ECP

(ωi+ωj )I−1(Si)I−1(Sj )

+τ1
∑

<i,j>∈ECP

(ωi+ωj )I1(Si)I1(Sj ), (12)

where

LR(yi; θ1) = f1(yi |θ1)
f0(yi)

,

the marginal likelihood ratio. Therefore, (12) integrates the evidence from biological
experiments that is reflected by the marginal likelihood ratio and the effect from
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interactions among neighboring genes in biological pathway reflected by the
conditional prior odds. It is easy to see that the posterior conditional logit form
in (12) is the same as the prior conditional logit in (3) except its intercept is
h + log(LR(yi); θ1). The observed log-likelihood ratio provides an additive effect
to the logit of prior.

We can also rewrite (12) in the form of a system of linear regressions:

logit(P(Si |y, SNi
, θ0, θ1)) = βi0 + βi1S1 + · · · + βinSn,

i = 1, . . . , n, (13)

where

βi0 = h + logLR(yi; θ1),

βij =
{
0 if i = j or < i, j >�∈ ECP ,

(ωi + ωj ){τ1I1(Sj ) + τ0I−1(Sj )} if < i, j >∈ ECP .

The posterior probabilities of other three priors proposed in Sect. 2.1 have similar
logistic regression forms. As mentioned before, the differences among Method 2,
Method 3, and Method 4 are the definitions of ωi .

2.5 Monte Carlo Markov Chain (MCMC) Simulation

As the number of genes becomes very large, it is prohibitive to calculate the
posterior probability directly. But the posterior distribution has a nice closed-form
conditional distribution, due to the Markov property. It is easier to sample from
the conditional distribution using the Gibbs sampling [9]. The Gibbs sampler is
one of the MCMC algorithms, and it can generate a sequence of samples from the
conditional distributions.

In our context, the specific steps are described as the following: we start by setting
the initial values of S, s(0) = (s1, . . . , sn). Here, the upper case S is to denote a
random vector and use the lower case s(k) to denote a realization of the random
vector in the kth iteration. The elements of the vector s(k) are +1s and −1s. At
iteration k, we update the labels sequentially for i = 1, . . . , n based on

logit(P(s
(k)
i |y, s

(k)
1 , · · · , s

(k)
i−1, s

(k−1)
i , · · · , s(k−1)

n , θ1, θ0)

= βi0 + βi1s
(k)
1 + · · · + βi,i−1s

(k)
i−1 + βi,i+1s

(k−1)
i+1 + · · · + βins

(k−1)
n .

When performing the Gibbs sampling, we recommend to restart the simulation
multiple times with different initial values to reduce the influence of initial values
and ignore a number of simples from beginning (the so-called burn-in period).
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2.6 Making Inference Based on the Marginal Posterior
Probability

In GWAS and mRNA expression studies, a set of genes is identified as candidates
that are very likely to be associated with diseases or differentially expressed.
Therefore, we want to include as many truly positive genes among the candidates
as possible. Following [10], we describe a method that can be used to rank order
genes. The inference of gene status is based on mi = P(Si = 1|y, θ0, θ1), the
mean of the marginal posterior probability of Si . A decision rule in the form
δ(mi) = I (mi ≥ m∗) is considered, where I (·) is an indicator function and m∗ is a
decision threshold. Here, m∗ can facilitate deciding the status of a gene as below:

δ(mi) =
{
1 mi ≥ m∗

0 mi < m∗.

If δ(mi) is 1, the decision is positive, indicating that gene i is considered to be
associated with the disease or differentially expressed; otherwise, gene i is identified
as a negative gene. To find the decision threshold m∗, a 0–1 loss function, which
is widely used in classification problem, is employed. In our context, a 0–1 loss
function is defined byL(S, δ) = ∑n

i=1 |I1(Si)−δ(mi)|. This loss function penalizes
equally the false positive and false negative errors. Note that L(S, δ) is a random
variable because it is a function of the random vector S and a decision function δ(·),
which depends on E[S|y] and m∗. We consider the expected loss with respect to the
posterior distribution of S:

E{L(S, δ)|y, θ0, θ1} =
n∑

i=1

|I1(Si) − δ(mi)| · P(Si |y, θ0, θ1). (14)

Then, m∗ is sought to minimize the expected loss:

m∗ = argmin
m

E{L(S, δ)|y, θ0, θ1}

= argmin
m

n∑

i=1

|I1(Si) − δ(mi)| · P(Si |y, θ0, θ1).

(15)

To find the solution, look at the loss incurred by gene i: [1 − δ(mi)] · mi + δ(mi) ·
(1−mi). To minimize it, δ(mi) should be 1 if mi ≥ 0.5 and 0 otherwise. Therefore,
the expected loss in Eq. (14) can be minimized when m∗ = 0.5. For other possible
decision rules, please see [10].
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3 Simulation Studies

Two simulation studies are carried out to examine how the values of (h, τ1, τ0)

affect the network and evaluate the performances of the proposed methods. A small
combined network that only contains 10 nodes is used to explore the effect of prior
settings. A relatively large combined network having 27 nodes is used to evaluate
the performance of combined network based on the control of false positive rates
and false discovery rates.

4 10-Node Network

A 10-node network is used to study the effects of hyper-parameters h, τ1, and τ0.
In the network shown in Fig. 6, Graph A has 6 nodes, and Graph B has 10 nodes.
Combined together, there is a total of 10 nodes in the network. Nodes (1, 2, 4, 10)
are labeled as +1 (in red color) and nodes (5, 6, 7, 8, 9) are labeled as −1 (in blue
color). Graph A and Graph B share 4 positive nodes (1, 2, 3, 4). In addition, Graph
B has one more positive node (Node 10) than Graph A. After combining the two
graphs based on the common nodes, we can obtain a combined graph in which
multiple edges exist. Compared to the single graph A or B, some neighbors are
connected by two edges. Consequently, neighboring nodes with identical labels
have reinforced relationship if connected by multiple edges. The more edges the
neighboring genes share, the stronger the relationship they have. As a result, it
is more likely for the neighboring genes to have the same status. To conduct a
fair comparison between using only Graph A or B and using combined 10-node
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Fig. 6 Simulated 10-node networks and combined network
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network, the same set of nodes has to appear in both Graphs A and B, as do in the
combined graph. Therefore, the nodes in Graph B but not in Graph A are added as
singletons to Graph A.

When S = +1, to simulate different levels of the power of the statistical tests,
p-values are calculated from two-sided z-scores drawn from N (0.5, 1), N (1, 1),
and N (1.5, 1), corresponding to the power of 0.08 (weak), 0.16 (median), and 0.32
(strong), respectively, for the tests. When S = −1, p-values are sampled from
Uniform(0, 1).

To study the effects of hyper-parameters (h, τ1, τ0), Table 1 lists four main
groups of prior settings. They are chosen to control the prior mean P(Si = +1)
to be around 0.05, 0.15, 0.25, and 0.4, respectively, for the four groups. The average
values of P(Si = +1) are listed in the column E[Pr(Si = 1)]. Under each main
group, there are two subgroups. The difference of the two subgroups is in the
average probability of P(Si = Sj = +1), shown in the column E[Pr(Si = Sj = 1)].
The values of (μ̄, a, ν, d) in likelihood function are set to be (3,1,10,1).

One thousand datasets are simulated for every prior setting. For the 10-node
network, the posterior probability can be calculated directly from the global measure
without using the Gibbs sampling. This is because there are only 1024 configura-
tions in total, and it is not computation-intensive to evaluate the normalizing term
in the global measure in Eq. (10). To rank the genes based on p-values or marginal
posterior P(Si = +1|y) from the proposed methods, we can calculate true positive
rate and false positive rate:

true positive rate = number of true positives

number of true positives + number of false positives
,

false positive rate = number of false positives

number of true positives + number of false positives
.

By varying the cutoff values, we can plot true positive rate versus false positive
rate to draw the receiver operating characteristic (ROC) curve. Finally, the area
under the ROC curve (AUC) can be calculated. The value of AUC is 0.5 without

Table 1 Prior settings for the 10 nodes combined network

Parameters Prior mean

Group Subgroup h τ1 τ0 E[Pr(Si = 1)] E[Pr(Si = Sj = 1)]
1 a -3.000 0.100 0.001 0.0483 0.0029

b -2.750 0.150 0.005 0.0616 0.0051

2 a -2.000 0.200 0.001 0.1351 0.0275

b -2.000 0.250 0.005 0.1397 0.0322

3 a -1.250 0.100 0.001 0.2430 0.0717

b -1.500 0.250 0.005 0.2329 0.0861

4 a -0.500 0.050 0.005 0.3956 0.1703

b -1.000 0.250 0.010 0.3660 0.1965
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Fig. 7 AUC of the 10-node pathway. Graph A and Graph B are referring to methods based on
single pathways A and B, respectively. Methods 1–4 are the proposed ones to combine both
pathways. The black horizontal lines indicate AUC based on p-values only

any models, and a value of the AUC higher than 0.5 means that the performance
of the model is better. The AUCs calculated using only the p-values are 0.5276,
0.6281, and 0.7463, corresponding to weak, median, and strong associations. Fig. 7
shows the performance of proposed methods.

First of all, in Fig. 7, the values of AUC from Bayesian models (Graph A, Graph
B, and Methods 1–4) are larger than the values obtained using p-values alone (the
black horizontal lines), no matter using a single pathway (Graph A and Graph B) or
the combined one (Methods 1–4). Using the combined graph outperforms the single
graph, especially in prior setting 2, prior setting 3, and prior setting 4. In general,
the values of AUC that are corresponding to subgroup (b) are higher than those to
subgroup (a). The reason is that (h, τ1, τ0) in subgroup (b) are larger than the ones in
subgroup (a). So, priors in subgroup (b) encourage nodes labeled as +1. In general,
the value of τ1, which is the weight of linked truly associated or equally expressed
genes, should be larger than τ0.

5 27-Node Network

The proposed methods are also applied to two large networks and the combined
network in Fig. 8. There are 21 nodes in Graph A and 24 nodes in Graph B. Nodes
1, 2, 3, 4, 5, 6, 19, 22, and 23 are considered as true positive genes (in red color),
and the others are negative genes (in blue color). One positive node (#19) and two
negative nodes (#20 and #21) in Graph A are not presented in Graph B. On the other
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Fig. 8 Simulated 27-node networks and the combined network

Table 2 Prior settings for the combined 27-node pathway

Parameters Prior mean

Group Subgroup h τ1 τ0 E[Pr(Si = 1)] E[Pr(Si = Sj = 1)]
1 a -3.000 0.100 0.001 0.0470 0.0031

b -2.750 0.150 0.005 0.0626 0.0061

2 a -2.000 0.200 0.001 0.1414 0.0308

b -2.000 0.250 0.005 0.1533 0.0434

3 a -1.250 0.100 0.001 0.2491 0.0767

b -1.500 0.250 0.005 0.2602 0.1139

4 a -0.500 0.050 0.005 0.3991 0.1740

b -1.000 0.250 0.010 0.4184 0.2686

hand, two other positive nodes (#22 and #23) and four negative ones (#24, #25, #26,
and #27) in Graph B are not in Graph A. When they are combined together, we
obtain a 27-node network. The prior settings are the same as that chosen for 10-
node networks. Table 2 shows the average prior probabilities P(Si = 1) and the
average prior probabilities P(Si = Sj = 1).

The same method is applied to simulate p-values, that is, they are computed
from two-sided z-scores drawn at random from N (1, 1), N (1.5, 1), and N (2, 1)
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Fig. 9 AUC of the 27-node pathway. Graph A and Graph B refer to methods based on single
pathways A and B, respectively. Methods 1–4 are the proposed ones to combine both pathways.
The black horizontal lines indicate AUC based on p-values only

when S = +1, and p-values are sampled from Uniform(0,1) when S = −1. The
AUC is computed for each group of prior settings to evaluate the performances
of the proposed methods. We simulate 100 datasets and run a Gibbs sampler with
10 restarts where each restart contains 1000 iterations (the first 100 are burn-
ins). For each simulated dataset, we calculate the value of AUC. Fig. 9 shows the
average values of AUC of the 100 simulations for all scenarios. The values of AUC
computed from p-values alone are 0.6367, 0.7489, and 0.8483, corresponding to
weak, median, and strong tests, respectively. Form the figure, similar observations
can be drawn as from the 10-node network.

In addition to comparisons based on the AUC, next we evaluate the performances
of the proposed methods in terms of false positive rate (FPR), true positive rate
(TPR), and false discovery rate (FDR). We apply the decision rule δ(mi) to the
marginal posterior probability with a cutoff m∗ = 0.5. Table 3 lists the average FPR,
TPR, and FDR of 100 datasets with 8 different prior settings. We also compare the
proposed methods with the p-value method with a cutoff value of 0.05.

In Table 3, for each prior setting, the proposed methods that make use of multiple
networks have higher TPR and lower or equal FDR than using a single network. For
prior setting groups 1, 2, and 3, the FPR of the proposed methods is much lower
than 0.05, making the TPR worse than the method of p-value only. However, the
prior setting 4b controls FPR at ∼0.05, and it has a higher TPR and a lower FDR
than using p-value alone.
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Table 3 Average false positive rate (FPR), true positive rate (TPR), and false discovery rate (FDR)

Weak association Median association Strong association

Group Method TPR FPR FDR TPR FPR FDR TPR FPR FDR

p-Value 0.1578 0.0528 0.4238 0.3111 0.0528 0.2567 0.5189 0.0528 0.1549

1a Graph A 0.0489 0.0056 0.6183 0.1100 0.0056 0.3278 0.2389 0.0056 0.0979

Graph B 0.0489 0.0056 0.6183 0.1078 0.0056 0.3278 0.2411 0.0056 0.0979

Method 1 0.0500 0.0056 0.6167 0.1122 0.0056 0.3278 0.2444 0.0056 0.0979

Method 2 0.0511 0.0056 0.6067 0.1111 0.0056 0.3278 0.2411 0.0056 0.0979

Method 3 0.0511 0.0056 0.6067 0.1133 0.0056 0.3178 0.2422 0.0056 0.0979

Method 4 0.0511 0.0056 0.6067 0.1167 0.0056 0.3178 0.2511 0.0056 0.0879

1b Graph A 0.0567 0.0072 0.5783 0.1311 0.0072 0.2775 0.2722 0.0072 0.0748

Graph B 0.0578 0.0072 0.5683 0.1333 0.0078 0.2792 0.2811 0.0078 0.0757

Method 1 0.0567 0.0072 0.5783 0.1367 0.0078 0.2787 0.2956 0.0078 0.0752

Method 2 0.0567 0.0072 0.5783 0.1344 0.0072 0.2770 0.2867 0.0072 0.0740

Method 3 0.0578 0.0072 0.5773 0.1389 0.0072 0.2750 0.3033 0.0072 0.0740

Method 4 0.0600 0.0072 0.5673 0.1456 0.0072 0.2750 0.3200 0.0078 0.0643

2a Graph A 0.0900 0.0183 0.4625 0.2111 0.0183 0.2235 0.4167 0.0183 0.0869

Graph B 0.0911 0.0178 0.4575 0.2144 0.0183 0.2018 0.4244 0.0194 0.0904

Method 1 0.0956 0.0183 0.4508 0.2278 0.0189 0.1910 0.4622 0.0228 0.0976

Method 2 0.0933 0.0183 0.4608 0.2144 0.0178 0.2143 0.4400 0.0183 0.0836

Method 3 0.1022 0.0178 0.4454 0.2233 0.0178 0.1900 0.4667 0.0194 0.0754

Method 4 0.1078 0.0183 0.4425 0.2511 0.0183 0.1756 0.4900 0.0194 0.0615

2b Graph A 0.0922 0.0183 0.4525 0.2133 0.0189 0.2185 0.4400 0.0206 0.0889

Graph B 0.0944 0.0178 0.4508 0.2167 0.0178 0.1943 0.4522 0.0194 0.0870

Method 1 0.1033 0.0189 0.4435 0.2344 0.0200 0.1782 0.4822 0.0261 0.1041

Method 2 0.1033 0.0178 0.4404 0.2167 0.0178 0.2177 0.4633 0.0183 0.0832

Method 3 0.1100 0.0189 0.4392 0.2511 0.0183 0.1781 0.4889 0.0200 0.0649

Method 4 0.1200 0.0189 0.4292 0.2933 0.0194 0.1687 0.5378 0.0222 0.0661

3a Graph A 0.1356 0.0350 0.4195 0.2811 0.0361 0.2200 0.5022 0.0361 0.1202

Graph B 0.1344 0.0356 0.4249 0.2856 0.0361 0.2177 0.5067 0.0383 0.1245

Method 1 0.1400 0.0361 0.4205 0.2978 0.0378 0.2209 0.5222 0.0394 0.1225

Method 2 0.1389 0.0356 0.4230 0.2867 0.0356 0.2155 0.5089 0.0361 0.1188

Method 3 0.1422 0.0361 0.4224 0.2967 0.0356 0.2094 0.5189 0.0367 0.1184

Method 4 0.1489 0.0356 0.4143 0.3156 0.0356 0.2010 0.5322 0.0367 0.1160

3b Graph A 0.1322 0.0317 0.4226 0.2911 0.0322 0.1930 0.5211 0.0322 0.1045

Graph B 0.1344 0.0317 0.4253 0.3000 0.0322 0.2042 0.5278 0.0339 0.1073

Method 1 0.1522 0.0333 0.4028 0.3311 0.0361 0.2048 0.5656 0.0394 0.1131

Method 2 0.1400 0.0311 0.4208 0.3100 0.0317 0.1964 0.5322 0.0317 0.1004

Method 3 0.1489 0.0311 0.4108 0.3456 0.0317 0.1739 0.5778 0.0317 0.0944

Method 4 0.1622 0.0322 0.4003 0.3933 0.0333 0.1675 0.6267 0.0339 0.0906

(continued)
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Table 3 (continued)

Weak association Median association Strong association

Group Method TPR FPR FDR TPR FPR FDR TPR FPR FDR

4a Graph A 0.2089 0.0689 0.4314 0.3867 0.0700 0.2772 0.5989 0.0706 0.1828

Graph B 0.2100 0.0678 0.4244 0.3867 0.0672 0.2681 0.5967 0.0667 0.1744

Method 1 0.2133 0.0694 0.4206 0.3911 0.0694 0.2719 0.6011 0.0700 0.1802

Method 2 0.2089 0.0672 0.4288 0.3867 0.0672 0.2706 0.6011 0.0678 0.1770

Method 3 0.2133 0.0672 0.4238 0.3967 0.0678 0.2565 0.6044 0.0672 0.1748

Method 4 0.2144 0.0683 0.4248 0.4056 0.0683 0.2549 0.6056 0.0678 0.1753

4b Graph A 0.1789 0.0456 0.3974 0.3844 0.0467 0.2107 0.5989 0.0478 0.1287

Graph B 0.1822 0.0489 0.4124 0.3889 0.0506 0.2161 0.6167 0.0528 0.1332

Method 1 0.2022 0.0528 0.3817 0.4389 0.0544 0.1998 0.6644 0.0594 0.1413

Method 2 0.1800 0.0467 0.4134 0.4056 0.0478 0.1956 0.6256 0.0489 0.1243

Method 3 0.2011 0.0494 0.3961 0.4444 0.0506 0.1937 0.6589 0.0528 0.1251

Method 4 0.2522 0.0506 0.3425 0.4989 0.0533 0.1758 0.7133 0.0544 0.1219

Table 4 Details of lung cancer datasets

Dataset name Number of controls Number of cases

CL 17 65

Moff 27 52

NCIU133A 18 86

NCILungU133A 44 131

6 Lung Cancer Data

We used four mRNA microarray datasets of lung adenocarcinoma [43] to evaluate
the performances of the proposed methods. Data were pre-processed and patients
were grouped to two categories, labeled as cases and controls, according to their
survival times. For details of the data processing, please see [11]. Each of the
datasets has 12,992 genes. Table 4 contains information of the data example. Two-
sample t-tests were used to obtain p-values for all genes in all four datasets.

We used 59 lung cancer genes [11] as true positive genes in our analysis.
However, this set has a much smaller size than the number of genes in the study. To
find additional “positive” genes, CL, Moff, and NCIU133A were used as discovery
datasets. For every gene, we used Fisher’s Method to combine the three p-values
from the three discovery sets to obtain an overall p-value. Then, we defined new
positive genes by controlling the FDR under 0.15 using the Benjamini–Hochberg
procedure [4]. As a result, among the 12,992 genes, a total of 1044 (or 8.0%) are
positive genes in the end.

We extracted 528 biological pathways from KEGG (http://www.kegg.jp), Genn-
Mapp (http://genmapp.org), and BioCarta (http://www.biocarta.com) that contained
3735 unique genes, among which 301 ones (or 8.1%) are in the positive set. We
found that 379 pathways had at least one lung cancer-associated gene. Finally, we

http://www.kegg.jp
http://genmapp.org
http://www.biocarta.com
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Table 5 Information of 3 biological pathways

Pathway name (short name) Number of genes
Number of true positive genes
under an FDR cutoff of 0.15

GM human integrin-mediated cell
adhesion (adhesion)

118 10

GM human regulation of actin
cytoskeleton (regulation)

206 12

GM human signaling of hepatocyte
growth factor receptor (HGFR)

120 11

Table 6 AUC of single- and combined-pathway analyses for 14 positive genes under FDR
cutoff of 0.15

Group

Method 1a 1b 2a 2b 3a 3b 4a 4b

Adhesion 0.5851 0.6425 0.6437 0.6586 0.6400 0.6550 0.6465 0.6693

Regulation 0.5743 0.6516 0.6738 0.7042 0.6448 0.6432 0.5945 0.5438

PGFR 0.5762 0.6650 0.6460 0.6773 0.6752 0.6821 0.6590 0.6894

Method 1 0.5768 0.6511 0.6555 0.6899 0.6641 0.6714 0.5745 0.5768

Method 2 0.5869 0.6722 0.7041 0.7175 0.7050 0.7057 0.7162 0.6920

Method 3 0.5859 0.6749 0.7033 0.7058 0.7068 0.7031 0.6952 0.6586

Method 4 0.5879 0.6835 0.7047 0.6971 0.6929 0.6913 0.6701 0.6362

chose three GennMapp (GM) pathways that were enriched with true positive genes.
Table 5 shows details about these three pathways.

The combined pathway had 256 distinct genes, 14 of which were associated
with lung cancer (Table 5). We used p-values of dataset NCILungU133A as our
test data. However, this test set was missing 18 of the 256 genes in the combined
gene pathway. After these 18 genes were removed, the combined pathway has 238
genes including 14 positive genes. To conduct a fair comparison between using a
single pathway versus using multiple ones, the same genes had to appear in both
the single pathway and the combined one. Therefore, the genes that were in the
combined pathway but not in the single pathway were added as singletons to each
single pathway.

The same 8 sets of prior parameters (Table 1) were used in our analysis. Use
Gibbs sampling to draw random samples from the posterior distribution. Restart
the Gibbs sampler 50 times and iterate 1000 times (the first 300 were burn-ins) for
each restart. Calculate AUC for all methods. The AUC based on the p-values is
0.5663. Table 6 and Fig. 10 show the values of the AUC for 3 single pathways and
4 proposed methods on the combined pathway.

The black horizontal line in Fig. 10 represents the value of AUC obtained from
p-values alone. In general, incorporating pathways, using either a single pathway
or the combined one, outperformed the one using p-value only. Comparing the
performance of using the combined pathway to one single pathway, the AUCs of
Methods 2, 3, and 4 are higher than using a single pathway in all settings. However,
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Fig. 10 AUC of single- and combined-pathway analyses with 3 GennMapp pathways to identify
14 positive genes (under an FDR cutoff of 0.15). Adhesion, Regulation, and HGFR refer to the 3
single-pathway analyses. Methods 1–4 are the proposed methods to combine the 3 pathways

Table 7 AUC of single- and combined-pathway analyses for 8 positive genes under FDR cutoff
of 0.10

Group

Method 1a 1b 2a 2b 3a 3b 4a 4b

Adhesion 0.6285 0.6970 0.7128 0.6967 0.7122 0.7174 0.7011 0.7476

Regulation 0.6114 0.6739 0.6728 0.6938 0.6516 0.6527 0.6177 0.5747

PGFR 0.6084 0.6788 0.6549 0.6755 0.7057 0.6989 0.6736 0.7698

Method 1 0.6120 0.6663 0.6413 0.6905 0.7076 0.6935 0.6133 0.6087

Method 2 0.6302 0.7326 0.7302 0.7258 0.7505 0.7269 0.7644 0.7399

Method 3 0.6274 0.7457 0.7337 0.7122 0.7571 0.7370 0.7454 0.7166

Method 4 0.6293 0.7579 0.7446 0.7253 0.7435 0.7217 0.7255 0.6859

Method 1 does not work well. One possible reason is that there are more shared
edges between two nodes in the combined network, but Method 1 only gives weight
to the neighbor nodes and does not consider the edges between the nodes.

To examine the impact of selecting positive genes, we further chose a smaller set
of positive genes by controlling the FDR at 0.10 instead of 0.15, and it produced
660 positive genes. In the 3 pathways considered above, 8 genes are in the positive
set, and the AUC based on the p-values is 0.6571. We reconducted the analysis, and
Table 7 reports values of the AUC for the pathway analysis. With the exception of
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prior parameter 1a, in general, the pathway-based analyses are better than using
p-value alone, and combining 3 pathways by Methods 2, 3, and 4 outperforms
the single-pathway methods. However, Method 1 does not work well with prior
parameters 4a and 4b.

7 Discussion

We propose to integrate multiple biological pathways to identify disease-related
genes. The proposed methods extend the approach of Chen et al. [10] from a
single biological pathway to multiple biological pathways. The proposed methods
are different from pathway-based approaches that do not take topological structure
into account. Simulation studies show that the proposed methods can outperform
the methods that only use a single biological pathway. Also, the performances of
proposed methods are evaluated with the lung cancer data.

There are some challenges that have influences on the performance of
topological-based approaches. First, the inaccuracy and incompleteness of
biological pathways can lead to the loss of statistical power. In the biological
pathways, some genes interact with others through chemical compounds. However,
biological pathways extracted from online databases will lose such gene–compound
interactions if we focus on genes. For example, gene NOD2 has been identified
significantly associated with Crohn’ s disease [16]. However, NOD2 indirectly
interacts with other genes in the Inflammatory Bowel Disease pathway, and
it becomes an isolated gene in the pathway extracted from KEGG. When we
apply the proposed approaches, NOD2 has been removed because of the loss of
compound mediated interactions. A number of isolated genes can lead to the loss
of information about gene–gene interactions. Moreover, it can reduce the statistical
power of topological-based approaches. Second, the inconsistency of biological
pathways from different data bases [14, 31] can lead to inconsistent conclusions.
For instance, gene ontology (GO) [1] defines different pathways for apoptosis
in different cell types. Alternatively, KEGG only defines a single pathway for
apoptosis. The different definitions of biological pathways in different data bases
can affect the results of the approaches. Third, the choices of biological pathways
have an influence on the results. When we choose biological pathways that are used
to generate combined pathway, we choose the ones that are related to the disease.
In general, opinions from experts and external resources are required. Fourth, as
the size of biological pathway increases, the computational task will become more
intensive.

There is a limitation that may affect the performance of the proposed approaches.
The prior setting varies with the sizes and structures of biological pathways. For
estimating the hyper-parameters, in the Supplementary Text S2 of [10], the authors
described a conditional empirical Bayes approach, which can be readily applied
to this chapter. For the future work, distributions may be considered to the hyper-
parameters to account for the variability of these parameters.
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