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Abstract 
Phenotypic plasticity, which involves phenotypic transformation in the absence of genetic change, may serve as a strategy for organisms 
to survive in complex and highly fluctuating environments. However, its reaction norm, molecular basis, and evolution remain unclear 
in most organisms, especially microbial eukaryotes. In this study, we explored these questions by investigating the reaction norm, 
regulation, and evolution of phenotypic plasticity in the cosmopolitan marine free-living ciliates Glauconema spp., which undergo 
significant phenotypic changes in response to food shortages. This study led to the de novo assembly of macronuclear genomes using 
long-read sequencing, identified hundreds of differentially expressed genes associated with phenotypic plasticity in different life stages, 
validated the function of two of these genes, and revealed that the reaction norm of body shape in response to food density follows 
a power-law distribution. Purifying selection may be the dominant evolutionary force acting on the genes associated with phenotypic 
plasticity, and the overall data support the hypothesis that phenotypic plasticity is a trait maintained by natural selection. This study 
provides novel insight into the developmental genetics of phenotypic plasticity in non-model unicellular eukaryotes and sheds light 
on the complexity and long evolutionary history of this important survival strategy. 
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Introduction 
Phenotypic plasticity refers to the ability of organisms to pro-
duce more than one phenotype from a single genotype, generally 
reflecting a physiological response to different environmental 
conditions [1–4]. Such strategies can be crucial for organisms 
living in highly variable or unpredictable environments, allowing 
them to adjust to changing conditions and sometimes promot-
ing population persistence in the face of harsh conditions [5–8]. 
Reaction norms describe and quantify the phenotypic responses 
for a given genotype to different levels of environmental factors 
[9]. Although the costs and benefits of phenotypic plasticity have 
been well studied in ecology and evolution, they are still not fully 
explored empirically, in terms of reaction norm, regulation, or 
evolution [10–15]. 

Although it is generally accepted that sessile organisms, such 
as plants, may rely more heavily on plasticity than motile organ-
isms that can move away from unfavorable conditions, in animals 
there are also numerous examples of such, e.g. plasticity in crab 
claw sizes in response to the hardness of prey, dung beetles’ male 
mating strategies, and so on [16–18]. Studying their phenotypic 
plasticity could deepen our understanding of how organisms and 
ecosystems respond to climate change [19–21]. It is also necessary 
to integrate ecological mechanisms to explore the influence of 
global change on phenotypic plasticity at the population level 
[22]. An organism’s adaptive potential is strongly influenced not 
only by the performance of each independent stage but also by 
the differences in form or function and the distinct ecological 
niches of these stages [23, 24]. Moreover, the phenomenon is not

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ej/article/18/1/w
rae136/7715924 by O

cean U
niversity of C

hina user on 30 August 2024

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

 26859 27963 a 26859 27963 a
 
mailto:longhongan@ouc.edu.cn
mailto:longhongan@ouc.edu.cn
mailto:longhongan@ouc.edu.cn


2 | Pan et al.

limited to individual organisms, but can also occur at the cellular 
level within a multicellular organism, where it can be associated 
with diseases [25]. Given its broad ecological, evolutionary, and 
medical implications, the study of phenotypic plasticity is thus 
of great significance [18, 26–29]. Previous studies on phenotypic 
plasticity focused on animals and plants and related theoretical 
modeling and phenotyping experiments [18, 30–36], with a more 
recent focus on functional genomics approaches [37]. 

Unicellular eukaryotes encompass more phylogenetic diversity, 
numerical abundance, and global biomass than animals and 
plants [38]. They are major members of the microbial food loop, 
a complex system of interactions between microorganisms that 
recycles and transforms nutrients in aquatic ecosystems and 
plays a crucial role in sustaining the productivity and diversity 
of these ecosystems [39, 40]. Phenotypic plasticity has also been 
frequently observed in unicellular eukaryotes [41–43]. For exam-
ple, some ciliated protozoa (Euplotes versatilis, Tetrahymena vorax) 
can undergo unequal fissions to generate giant cells that are 
predatory or cannibalistic in response to variation of food avail-
ability, and the unicellular green alga Chlamydomonas reinhardtii 
can form multicellular structures when predators are present 
[44–46]. Studies have shown that phenotypic plasticity can 
strongly affect trait variation along thermal gradients, when cells 
are challenged by climate change and ocean acidification, and 
phenotypic plasticity may allow organisms to maintain home-
ostasis and avoid extinction [47–49]. Thus, besides addressing the 
aforementioned questions, understanding the mechanisms and 
limits of phenotypic plasticity is critical for predicting the impacts 
of climate change on unicellular eukaryotes and their roles 
in ecosystems. Also, investigating the evolution of phenotypic 
plasticity in unicellular eukaryotes can provide insights into the 
origins of multicellularity and the development of complex life 
histories [45, 50]. 

Ciliates comprise a diverse group of microbial eukaryotes that 
are abundant in aquatic ecosystems and soils [51–53]. These fasci-
nating organisms have unique nuclear dimorphism, possessing a 
germline micronucleus, and a somatic macronucleus in the same 
cytoplasm. Ciliates have long been a focus for microbial ecologists, 
who study how these organisms respond to climate change in 
order to provide predictive tools [54–57]. The study of phenotypic 
plasticity can reveal how organisms behave in various ecological 
environments and may improve the accuracy of the predictions. 
Although some cases of phenotypic plasticity in ciliates were 
also reported [45, 53, 58, 59], previous investigations have rarely 
studied either the reaction norm or the molecular basis that 
underlies these transformations. 

Glauconema is a genus of free-living and cosmopolitan ciliates, 
widely found in global coastal waters [60–62]. Despite its potential 
as a research model for phenotypic plasticity, these bacteria-
grazers have received little attention from the standpoint of 
genetics, genomics, or phenotypic variation. Specifically, in 
response to food scarcity, the broad-bean-shaped, and slowly-
moving cells in vegetative growth (trophonts) transform into 
fusiform and fast swimmers (tomites), which hover in the water 
layer and suddenly dash. In some species, cells further transform 
into resting cysts if food bacteria are in lower density [60–62]. 
Due to the influence of geographical location and global 
environmental changes, some non-marine ciliates encounter 
high temperatures and high salinity. In response, they have 
evolved adaptive mechanisms, which have been partially explored 
in previous studies [52, 53, 58, 59, 63, 64]. The environmental 
stresses experienced by Glauconema in the ocean, encompassing 
factors such as temperature, salinity, hypoxia, air exposure, 

and anthropogenic pollutants, parallel that of other coastal 
organisms, such as the heterotrophic flagellate Oxyrrhis marina, 
the growth rate and cell volume of which show great plasticity 
upon temperature or food concentration change [65]. Thus, 
investigations into the phenotypic plasticity of Glauconema may 
provide broader insights into the genetic regulation and evolution 
of marine organisms. 

In this study, we explore the phenotypic plasticity of Glau-
conema spp. collected from the coastal waters of northern (G. sp1  
LHA0827) and southern China (G. sp2 LJL43), deriving the reaction 
norms of the body shape vs. food bacteria density, analyzing 
critical genes/pathways based on differential gene expression 
from low-input RNAseq combined with RT-qPCR and RNAi tech-
niques, and de novo assembling and annotating their macronu-
clear genomes. By filling in the gaps in our understanding of the 
basic genome biology of the genus as well as revealing aspects 
of phenotypic plasticity, this study thus provides a framework for 
further understanding the genetics and evolution of this globally 
important group of eukaryotic microbes. 

Materials and methods 
Species isolation, culture, and identification 
Glauconema sp1 LHA0827 and G. sp2 LJL43 were collected from 
the coastal water of Qingdao, Shandong Province (36.06◦ N, 
120.37◦ E; 27◦C; pH = 8.01; 27 August 2017) and Danzhou, Hainan 
Province (19.67◦ N, 109.09◦ E; 26.3◦C; pH = 8.16; 22 June 2019), 
China, respectively. Strain cultures are available upon request 
at the Institute of Evolution and Marine Biodiversity, Ocean 
University of China (https://iemb.ouc.edu.cn/labstrains/list.htm). 
Each culture was established from one single cell, which was 
rinsed by serial dilution in autoclaved seawater with 10 μg/ml 
Penicillin-Streptomycin-Amphotericin B (Cat. No.: 03-033-1B; 
Biological Industries). Then we fed the cells with the food bacteria 
Pseudoalteromonas sp. LC2018020214 suspended in autoclaved 
seawater at OD600 = 0.3 and 25◦C. The bacterium was isolated 
from the same sample as G. sp1 LHA0827 and cultured with 
marine LB broth on a 200 rpm shaker at 25◦C, using a lab-made 
recipe [66, 67]. 

Randomly selected living cells were observed using bright 
field and differential interference contrast microscopy at 1000× 
magnification (Nikon Eclipse Ni-U). The infraciliature was 
revealed by the protargol staining method [68]. The protargol 
powder was made following a lab-developed recipe [69]. Hoechst 
33342 staining for 30 min was used to reveal the nuclear 
apparatus using the fluorescent module of the microscope 
(Nikon Eclipse Ni-U). The immuofluoresence (IF) staining was 
done on trophonts cultured for 48 h after inoculation following 
Greer et al. [70]. Briefly, cells were incubated for 2 h at room 
temperature with the primary antibody—Monoclonal Anti-α-
Tubulin antibody produced in mouse (Cat. No.: T5168; 1:10 000; 
Sigma). Then, we incubated the cells with the secondary antibody 
(Goat anti-rabbit IgG (H + L); Cat. No.: A-21428; 1:2000; Sigma) 
for 1 h at room temperature. The photomicrographs were 
taken using a Nikon Y-TV55 microscope and a Nikon DS-Ri2 
camera. Finally, the nucleus was displayed with DAPI staining 
(ProLong gold antifade mountant with DAPI; Cat. No.: P36935; 
Invitrogen) for 2 min. We identified species by the morphological 
features and 18S rRNA gene sequences. The PCR primers used 
for amplification were EukA (5′-AACCTGGTTGATCCTGCCAGT-
3′) and EukB (5′-TGATCCTTCTGCAGGTTCACCTAC-3′). The newly 
submitted sequences of G. sp1 and G. sp2 have been assigned 
GenBank accession numbers ON141507and ON141508. The 18S
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rRNA gene sequences of G. sp1 and G. sp2 showed a 97.6% 
sequence identity, with a difference of 38 base pairs. 

Estimating the reaction norm of Glauconema 
phenotypic plasticity 
We first measured the distributions of body shapes (length/width 
ratio) of the trophont and the tomite life stages. Fifty cells were 
first cultured in 150 × 25 mm Petri dishes with 100 ml food 
bacteria suspension in autoclaved seawater (OD600 ∼ 0.3; 25◦C), 
and measured on a compound microscope (Nikon Eclipse Ni-U) 
by immediately taking photomicrographs, at 30 h for trophonts 
and 54 h for tomites after inoculation. Then, one chemostat-
like culturing device was also used to estimate the body shapes 
at gradient densities of food bacteria (OD600 = 0.5, 0.3, 0.1, 0.05, 
0.03, 0.01), with four chambers and a flow-rate of 1 ml/min 
(Supplementary Fig. S1: Control). For each replicate, the cell 
length and width of 45 cells were measured after about 8 h in 
the chambers. 

We also measured the swimming speed of cells in the trophont 
and the tomite stages of the two species, respectively. Swim-
ming speed was measured at two different time points (30 h for 
trophonts—when all cells are in the trophont stage, and 54 h for 
tomites—when many trophonts have transformed into tomites) 
after inoculation. We first isolated cells in the trophont or the 
tomite stages, and immediately filmed the swimming trajectories 
of the cells on a Nikon Eclipse Ni-U microscope at 100× mag-
nification. Every video lasted five seconds and was shot at 25 
fps (frames per second) with 1636 pixels wide and 1088 pixels 
high. The swimming speed of 50 cells in each life stage of each 
strain was measured using the Fiji image analysis platform and 
manual calibration [71]. The mp4 videos were firstly imported into 
the software using the function “FFMPEG,” then their “Type” of 
“Image” was changed into 8-bit, and the “threshold” was adjusted 
to light background and black labels. Finally, we used MTrack2 in 
“Tracking” to calculate the distance (D: pixels) of cell swimming 
and the number of frames (N) with the parameter “Minimum 
Object Size (pixels): 10; Maximum Object Size (pixels): 99 999; 
Maximum Velocity (pixels): 100; Maximum track length (frames): 
1.” Cells that emerged in more than 10 frames were included in 
the calculation. After scale conversion, 1 pixel is about 0.88 μm 
and one frame is equal to 0.04 s. The swimming speed (v: μm/s) 
was calculated by (D × 0.88)/(N × 0.04) = 22D/N (μm/s). 

In order to measure the survival curve of tomites, similar cul-
turing conditions in Petri dishes in three replicates were applied 
as the above for estimating the reaction norm. Cells were first 
inoculated and cultured for 54 h, when most cells transformed 
into tomites. Every 24 h, each culture was then thoroughly mixed 
with a 10 ml pipette, and 1 ml was sampled from the culture. 
The 1 ml culture was then mixed by vortexing, from which 100 μl 
was transferred to a Gridded Sedgewick Rafter for three times and 
tomites were counted (1 mm2; Model 1801-G20; cells were fixed 
with Bouins’ fluid before each counting). 

Sample collection for monitoring the eukaryotic 
community dynamics of Glauconema habitats 
We isolated Glauconema sp1 LHA0827 from sea lettuces in summer 
coastal waters off Qingdao, northern China. Species identifica-
tion of isolates was done by live observations on morphology 
and life cycle, protargol staining, and 18S rRNA gene sequencing 
(Fig. 1B–G; Table 1; Supplementary Table S1). In order to reveal 
the seasonal variation of Glauconema abundance and guide future 
collections, we also investigated the biomass of Glauconema in 
coastal waters of Qingdao, by collecting ∼10 × 10 cm sea lettuces 

emerged in seawater every 2 weeks from June to October 2021 with 
on-site seawater without the algae as control at four closeby spots 
(Supplementary Table S2), and 18S rRNA V8–9 amplicon sequenc-
ing of the phycosphere microflora of sea lettuces sampled (Fig. 1A; 
Supplementary Fig. S2; Supplementary Table S2; Supplementary 
Text). We calculated the reads percentage (out of eukaryotes) of 
Uronema spp. (coastal dominant scuticociliates) and Glauconema 
spp. in seawater and sea lettuce samples at each time point to 
estimate their abundance (Supplementary Fig. S2B). Uronema spp. 
can be seen in all samples, but only one sample for Glauconema 
with extremely low abundance (0.0039%). 

DNA and RNA extraction for de novo genome 
assembly and annotation of the two Glauconema 
species 
For G. sp1 LHA0827 or G. sp2 LJL43, one single cell was inoculated 
into 2 ml bacteria suspension of each well on a 6-well plate, and 
cultured for 30 h. Twenty cells were then transferred to each 
of 10 150 × 25 mm Petri dishes with 100 ml of food bacteria 
suspension (OD600 ∼ 0.3) for 30 h at 25◦C. For DNA extraction, 
cells were first picked using microcapillary pipettes to reduce 
food bacteria contamination, then harvested by centrifugation at 
1500g for 5 min, and starved for 2 h to further reduce bacteria 
contamination. The MasterPure Complete DNA&RNA Purification 
kit (Cat. No. MC85200; Lucigen, USA) was used to extract the 
genomic DNA, which was further purified by a Genomic DNA 
Clean & Concentrator (Cat. No.: ZRC000496; ZYMO). 

In order to extract total RNA for genome annotation, we cul-
tured each strain in 400 ml food bacteria suspension (OD600 ∼ 0.3) 
in 1 L flasks for 30 (trophonts), 36 (mixture of trophonts and 
tomites), and 42 h (mostly tomites). For each flask, we transferred 
and centrifuged 300 ml of upper-layer culture at 1500g for 5 min 
at 4◦C. The above MasterPure kit was used to extract total RNA. 

Genome and transcriptome sequencing 
For Oxford Nanopore long-read sequencing, the libraries of G. sp1 
LHA0827 and G. sp2 LJL43 were both prepared with the ligation 
sequencing kit (SQK-LSK109; Nanopore) and were loaded into 
R9.4.1 flow cells. G. sp1 LHA0827 library was sequenced on a 
MinION sequencing device in the lab and G. sp2 LJL43 library 
on a PromethION platform at NextOmics Biosciences (Wuhan, 
China). We also performed short-read PE150 sequencing: genomic 
libraries of Glauconema spp. were prepared by the TruSeq Nano kit 
(Cat. No. 20015964; Illumina, USA) and sequenced by the NovaSeq 
6000 System (Illumina) at Berry Genomics, Inc. (Beijing, China). 

RNA libraries of the above mass cultures at different life stages 
for genome annotation were generated using the NEBNext Ultra 
RNA Library Prep Kit (Cat. No.: E7370L). In order to study possible 
operon-like structures and alternative splicing, as well as verify 
the quality of genes annotated, we also performed full-length 
transcriptome sequencing: PacBio SMRT-bell libraries were pre-
pared by the SMRTbell Express Template Prep Kit 2.0 (Cat. No.: 
PN 101-853-100), 1–10 kbp size-selected, loaded onto a SMRT cell, 
and sequenced on a Sequel II system using a 30 h-movie (Pacific 
Biosciences, CA, USA) at Berry Genomics, Inc. (Beijing, China). 

In order to analyze differential gene expression between life 
stages more accurately than the mass cultures usually with mixed 
life stages, we also constructed RNAseq libraries using the NEB-
Next Single Cell/Low Input RNA Library Prep Kit for Illumina 
(NEB, Cat. No.: E6420S). Briefly, ∼20 cells were picked on a dis-
section microscope from each replicate of three life stages (three 
replicates for each stage; the initial 20 cells were cultured in 
150 × 25 mm Petri dishes with 100 ml food bacteria suspension
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Figure 1. Sampling sites, morphology, and phenotypic plasticity of Glauconema spp. (A) Sampling sites with successful isolations (G. sp1 LHA0827, 
Qingdao, upper star, IV; G. sp2 LJL43, Danzhou, lower star, V) and those for 18S rRNA V8–9 amplicon sequencing to monitor coastal ciliates’ community 
dynamics (Zhanqiao-I, Huiquan Square-II, Xiaomai Island-III and Sculpture Park-IV. (B–D) Different life stages of G. sp1 LHA0827: trophont (B), tomite 
(C), resting cyst (D). (E) The macronucleus (arrowhead) and micronucleus (arrow) after Hoechst 33342 staining. (F) Arrowhead indicates the 
cytoskeleton after immune-staining of α-tubulin. (G) Paroral membrane (arrowhead) and oral membranelles (arrows). All scale bars are 10 μm. The 
swimming trajectories of tomites (H, J) and trophonts (I, K) were observed for five seconds. (L) The survival curve of tomites of G. sp1 LHA0827 upon 
starvation. (M) The frequency distributions of the length/width ratio for trophonts (left) and tomites (right). (N) The swimming speeds (μm/s) of 
trophonts and tomites (Mann–Whitney U test, LHA0827, P = 1.39 × 10−15). (O) Fitted curves of the length/width ratios and food-bacteria density. 
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Table 1. Morphometric features of trophonts and tomites of Glauconema sp1 LHA0827 (upper row for each feature) and Glauconema sp2 
LJL43 (lower row). 

Features Min. Max. Mean SD CV (%) N 

Body length (μm) 26.67 42.51 34.64 3.56 10.28 50 
of trophonts 21.25 35.63 29.68 3.08 10.36 50 

Body length (μm) 23.63 34.85 29.43 2.65 9.02 50 
of tomites 22.84 42.64 31.43 4.11 13.08 50 

Body width (μm) 13.04 21.99 17.93 2.24 12.52 50 
of trophonts 14.03 28.66 20.59 3.08 14.97 50 

Body width (μm) 8.16 14.92 10.67 1.31 12.23 50 
of tomites 8.31 16.03 11.20 1.68 14.99 50 

Somatic kinety number 12 14 12.63 0.58 4.56 24 
of trophonts 12 14 12.68 0.72 5.65 22 

Abbreviations: CV, coefficient of variation in %; Max., maximum; Mean, arithmetic mean; Min., minimum; N, number of specimens investigated; SD, standard 
deviation. 

(OD600 ∼ 0.3); 30 h for trophonts, 54 h for tomites, and 120 h for 
resting cysts), and transferred immediately to the cell lysis buffer 
on ice. NovaSeq 6000 System PE150 (Illumina) sequencing was 
then applied. 

Macronuclear genome assembly 
23.8 and 15.2 Gbp Nanopore and 22.5 and 38.1 Gbp NovaSeq 6000 
System raw reads were generated for G. sp1 LHA0827 and G. sp2 
LJL43, respectively. For Nanopore raw reads, we used Guppy v3.3.3 
(Oxford Nanopore Technologies) for base calling, and filtered 
out reads with base quality score < 8 and  length < 1000 bp using 
NanoFilt v2.7.1 [72]. Then, the high-quality reads were mapped 
to the reference genome of the food bacteria Pseudoalteromonas 
sp. LC2018020214 (NCBI GenBank accession no.: CP066804.1and 
CP066805.1), using Minimap2 (-x map-ont) with the default mode 
[73]. Any reads with a total alignment >80% of their own lengths 
were considered as contaminated reads. We obtained a total of 20 
and 14 Gbp bases for G. sp1 LHA0827 and G. sp2 LJL43, respectively. 

For Illumina sequences, adaptor-trimming and low-quality-
reads filtering were performed with fastp v0.20.1 with the follow-
ing parameter: “-u 20 -q 20”. The resulting reads were mapped 
to the food bacteria reference genome using BWA v0.7.17 with 
default settings [74]. We extracted unmapped data using SAM-
tools v0.1.9 [75] with -bf 12 and obtained 12 and 20 Gbp Illumina 
PE150 bases for G. sp1 LHA0827 and G. sp2 LJL43, respectively. 

For G. sp1 LHA0827, we first estimated the macronuclear 
genome size with high-quality Nanopore reads using wtdbg2 v2.5 
[76] and Flye v2.8 [77] (see detail in Supplementary Text). The 
draft genomes assembled by Canu v2.1.1 with the parameter: 
genomeSize = 200 m [78] received three rounds of polishing with 
Racon v1.4.3 with the default parameters [79] and another three 
additional rounds with Pilon v1.24 with the parameter: “--fix 
snps,indels” [80]. To further exclude bacterial contamination, 
contigs with GC content higher than 27% were removed for G. 
sp1 LHA0827, based on GC-content-distribution peaks of contigs 
(Supplementary Fig. S3A). Contigs were also queried against 
the bacterial genome database on 19 June 2021, downloaded 
from NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/), 
using BLASTN v2.10.1 (e-value: 1e-5) [81]. Any contigs with ≥80% 
identity and cumulative hit length ≥60% were filtered out. We also 
removed the contigs with sequencing coverage <20×. Finally, we 
also checked for and then kept the contigs that were filtered out 
as false negatives and found one contig containing the SSU-rRNA 
gene, as well as another two contigs with one telomere for G. sp1  
LHA0827. Assemblies were evaluated using QUAST v5.0.2 with 
default settings [82] and BUSCO v5.2.2 [83] with the settings -l 

alveolata_odb10 --augustus --augustus_species tetrahymena. 
Abundant (C4A2)n repeats are prevalent in the contig ends, 
which are also used in the closely-related Tetrahymena specie, 
a minimum of two copies of C4A2 were required to designate a 
contig telomere. Assembling and filtering details for G. sp2 LJL43 
are in Supplementary Fig. S3B. The inference of stop codon usage 
was used by codetta v2.0 [84]. 

Gene prediction and annotation 
The repeated regions in the genome were first detected using 
RepeatMasker v4.1.0 with “-e rmblast” [85] and RepeatModeler 
v2.0.1 with “-LTRStruct” [86]. tRNAscan-SE v2.0.9 with default 
settings [87] was used to identify the transfer RNAs (tRNAs). Then 
ribosomal RNA (rRNA) genes in the genome were also parsed out 
by RNAmmer v0.1.2 [88] with the settings -S euk. 

To identify protein-coding genes, first, we used fastp to trim 
the RNASeq data of different life stages mass cultured with 
the default parameters and mapped the trimmed data to the 
reference genome of the food bacteria with Hisat2 v2.1.0 [89], 
and then removed the contaminated reads using Samtools v0.1.9. 
De novo gene prediction and transcriptome-based methods were 
both applied. Trinity v2.21.0 [90] with the parameter: “--seqType 
fq” was used for de novo transcripts assembling and reference-
guided transcripts assembling. The Hisat2 mapping results were 
converted to the bam format, which was used to predict the gene 
structures by Braker2 v2.1.6 [91] and StringTie v1.3.7 with default 
settings [92]. The combination of the above de novo and reference-
guided assembled transcripts was used as the cDNA evidence 
for Augustus v3.3.3 [93] to train the gene prediction model. All 
of the gene sets from GlimmerHMM with default parameters, 
GenomeThreader with “-translationtable 6,” the Analysis and 
Annotation Tool (AAT) Package with “–dds ‘-f 100 -i 20 -o 75 -p 70 -a 
2000’ –filter ‘-c 10’ –gap2 ‘-x 1’,” PASA with “-C -R –ALIGNER gmap,” 
and Augustus with the only stop codon TGA were merged to 
produce the eventual gene sets using EVidenceModeler v1.1.1 with 
“–segmentSize 100000 –overlapSize 10000” and “–stop_codons 
TGA –min_intron_length 10” [94]. The non-redundant protein 
database (NR) was used to annotate protein-coding genes 
by BLASTP (e-value 1e-5 -word_size 3 -num_alignments 20 -
max_hsps 20 -show_gis). The gene name was derived from the 
best hit. The GO annotation was done by OmicsBox v1.4.11, and 
the KEGG pathway annotation was merged by the results of 
KAAS (KAAS—KEGG Automatic Annotation Server: https://www. 
genome.jp/kegg/kaas/; BBH method), KofamScan v2022-06-02, 
and eggNOG-mapper v2 [95–98]. Then, the KOs (KEGG Orthology) 
were converted to the Reference hierarchy (ko, reference pathway
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highlighting KOs) by KEGG Mapper (https://www.genome.jp/kegg/ 
mapper/search.html) [99]. 

The MITOS and GeSeq were used to annotate the mitogenomes 
with genetic code 4 of “the mold, protozoan, and coelenterate 
mitochondrial code and the mycoplasma/spiroplasma code.” The 
protein-coding genes were further verified by the NCBI Open 
Reading Frame Finder (https://www.ncbi.nlm.nih.gov/orffinder, 
accessed on 2 May 2022) and annotated by searching against 
the NCBI non-redundant protein sequences (NR) database with 
BLASTP. The ribosomal RNA (rRNA) genes were searched against 
the rRNA genes of Uronema marinum (NCBI Gene IDs: 37625978 and 
37625943) by BLASTN. The tRNAscan-SE v2.0 was used to predict 
the tRNA genes with the default mode. The central repeat regions 
were found by TRF v4.09 [100]. 

Comparative genomics and gene family analysis 
We used BLASTP to find similar proteins of the two Glauconema 
macronuclear genomes with an E-value threshold of 1e-05, then 
we used the function “File Merge For MCScanX” in TBtools to 
convert the gff3 to a concise format. Finally, the results of the 
collinearity between genomes were generated by Quick Run 
MCScanX Wrapper in the TBtools v1.106 [101]. The visualization 
of collinearity is done using “Advanced Circos” in TBtools [102]. 
Collinearity analysis within the genome also uses the above 
approach. 

To identify gene families, we downloaded seven high-quality 
macronuclear genome sequences of ciliates—Halteria grandinella 
(GCA_006369765.1), Ichthyophthirius multifiliis (GCF_000220395.1), 
Oxytricha trifallax (GCA_000295675.1), Paramecium tetraurelia 
(GCA_000165425.1), Pseudocohnilembus persalinus (GCA_001447515.1), 
Tetrahymena thermophila (GCA_000189635.1) from NCBI, and 
Euplotes vannus (Mar 2018) from Ciliates Genome Database (http:// 
ciliates.org/). We selected protein sequences derived from the 
longest transcripts for every gene by CD-hit, respectively, and 
discarded those with fewer than 50 amino acids [103]. Finally, we 
got 212 756 proteins, which were used as the input of OrthoFinder 
[104] to infer the phylogenetic orthology with the parameters:
-f /input_folder -M msa -T fasttree -T 28 -a 28 -S diamond. We 
obtained three time points as primary calibrations from the 
Timetree database (http://www.timetree.org/; E. vannus vs. Parame-
cium tetraurelia; Tetrahymena thermophila vs. Paramecium tetraurelia; 
Ichthyophthirius multifiliis vs. Tetrahymena thermophila). Then, r8s 
[105] was used to build the ultrametric tree based on the estimates 
provided by Timetree, and the expansion and contraction analyses 
of gene families were performed using CAFE v4.2.1 [106]. iTOL v6 
was then used to display and annotate the tree [107]. 

RNAseq-based gene expression in different life 
stages 
After sequencing, we obtained an average of 10.37, 9.96, and 4.07 
million clean reads for each sample of trophonts, tomites, and 
resting cysts, respectively. For Glauconema sp1 LHA0827, RNAseq 
clean reads from low-input RNA library constructions of differ-
ent life stages were mapped to the genome of G. sp1 LHA0827 
using Hisat2 v2.1.0, then sam files were converted to bam format 
using samtools v1.3.1. StringTie v2.1.5 with the setting -e -B -
G and prepDE.py3 script in StringTie were used to calculate the 
expression level of each gene. Genes with significantly different 
expression levels were identified by DESeq2 v1.32.0 [108] with  
the setting |log2(Fold change)| ≥ 1 and  Padj < .05. OmicsBox v1.4.11 
was used for the Gene Ontology (GO) analysis. GO and KEGG 
pathway enrichment analyses of the significantly differential 
expressed genes were done by clusterProfiler v4.0.2 (Padj < .05 and 

q-value < .05) [109]. 13 DEGs (1.75% of all) between trophonts and 
tomites, and 19 for trophonts vs. resting cysts (2.66% of all), belong 
to the expanding gene families (Supplementary Tables S3 and S4). 

In order to calculate dN/dS of the genes, we first retrieved the 
homologous genes of G. sp1 LHA0827 and G. sp2 LJL43. ParaAT v2.0 
was used to align the protein sequences of genes and match the 
aligned protein sequences with the corresponding DNA sequences 
with parameters: -m clustalw2 -f axt -g [110, 111]. For genes with 
dS < .75, the dN/dS was calculated by KaKs_Calculator v2.0 with
-m YN [112, 113], and the Jukes-Cantor Model was applied to 
account for multiple substitutions [114]. 

qPCR 
The culturing and RNA extraction procedures were consistent 
with those for gene expressions in different life stages. The Hieff 
NGS Single Cell/Low Input cDNA Synthesis & Amplification Mod-
ule kit (Cat. No.: 12500ES24; Yeasen Biotechnology, Shanghai) 
was used for cDNA generation, with oligo-dT primers to target 
eukaryotic mRNA. The cDNA was used as the template for qPCR. 
Then qPCR was done with the protocol of Hieff UNICON Universal 
Blue qPCR SYBR Green Master Mix (Cat. No.: 11184ES08; Yeasen 
Biotechnology, Shanghai) with 20 μl total reaction system with 
three replicates per life stage per gene. The primers of the two 
target genes for the qPCR were shown in Supplementary Table S5. 
The expression differences of the same gene in different life stages 
were calculated by comparing with the control gene jmjC, which  
has stable expression levels across different life stages based 
on RNAseq analysis, and its homolog jmj1 (absent in Glauconema 
genomes) is frequently used as a qPCR control gene in Tetrahymena 
[115], using the 2-��Ct method. 

We also analyzed the relative copy number of each gene at the 
DNA level in different life stages, using the RoomTemp Sample 
Lysis Kit (Cat. No.: P073; Vazyme, China) to lyse cells, which were 
directly used as the qPCR templates (three cells per replicate). 
Mapping and significance analyses were implemented by Graph-
Pad Prims v9.0.0 (www.graphpad.com). 

RNAi experiments 
The PCR products of the two target genes (pgk1: tig082700000136. 
101; RNA binding protein: tig082700000279.64), of which primers 
were shown in Supplementary Table S5, were ligated into a L4440 
plasmid. The L4440 plasmid was extracted by Plasmid Mini Kit 
II (Cat. No.: D6945-01; Omega Bio-Tek, USA). Then, the L4440 
plasmid was linearized by using reverse amplification primers 
(Supplementary Table S5) at two restriction sites (HindIII and 
Xbal). The PCR products of the target genes and the linearized 
L4440 plasmid were reconstituted using ClonExpress II One Step 
Cloning Kit (Cat. No.: C112; Vazyme Biotech Co., Ltd, Nanjing). 
After that, the L4440 plasmid linked with the target fragment was 
transformed into Escherichia coli HT115-competent cells, which 
were then plated on a LB medium plate containing tetracycline 
(12.5 μg/ml) and ampicillin (50 μg/ml). Positive clones were cul-
tured and induced by 0.4 mmol/L IPTG to express dsRNA as the 
treatment. The bacteria without IPTG induction were cultured 
simultaneously as the control. Afterwards, bacteria in the control 
and the treatment were rinsed twice with sterile seawater to 
remove medium and IPTG. After the E. coil cells were digested, 
dsRNA of the target gene expressed by the L4440 plasmid was 
discharged into the cytoplasm of hosts to mediate the target 
mRNA degradation. To ensure that population density did not 
affect body shape, we used a chemostat-like system to keep 
relatively stable food bacteria densities (OD600 = 0.1) (IPTG or non-
IPTG groups), with four chambers for each group and a flow-rate
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of 212 μl/min for 84 h (Supplementary Fig. S1). For each replicate, 
the cell length and width of 45 cells was measured after ∼48 and 
60 h and RT-qPCR was used to measure the relative expression of 
the target gene. 

Results 
Reaction norm of body shape follows a 
power-law distribution 
We observed typical Glauconema phenotypic plasticity: when 
food bacteria were abundant, cells were broad-bean-shaped 
and slowly-moving trophonts, but transformed into fusiform-
shaped and fast-swimming tomites when food bacteria were 
scarce, with a much narrower body shape than that of the 
trophonts (length/width ratios: 2.78 vs. 1.95, t-test, P = 9.63 × 10−29) 
and much faster swimming speed (207.50 vs. 30.86 μm/s; 
P = 6.94 × 10−16) (Fig. 1M and N; Supplementary Table S6). The 
swimming trajectories also reflect the larger range of activity of 
tomites (Fig. 1H and I). Trophonts also occasionally form resting 
cysts (Fig. 1D). 

To quantify phenotypic plasticity, we explored the reaction 
norm of body shape (BS) vs. food-bacteria density (FBD) at 25◦C, 
using a chemostat-like culturing system to maintain bacterial 
density at relatively stable levels (Supplementary Fig. S1). The 
body shape was estimated by the mean length/width, and food-
bacteria density was approximated by OD600 measurement 
(Supplementary Table S7). These results revealed a power-law 
reaction norm: BS = −0.09log2(FBD) + 1.76, R2 = 0.72, P = 1.68 × 10−7 

(Fig. 1O), indicating that the higher the food-bacteria density, 
the wider the cells (more trophonts), consistent with the 
life cycle from microscopic observations. Analyses of the 
length/width ratios from each experiment revealed widespread 
bimodal distributions, especially at lower bacterial density 
(Supplementary Fig. S4). The relative heights of the two peaks 
changed with food density, with relatively more tomites appearing 
at lower food densities. This infers that the life stages might be 
controlled by a single switch gene. 

De novo assembled macronuclear genome 
demonstrates high gene number 
Genomic resources for Glauconema were previously absent, 
imposing a barrier to understanding the molecular basis of 
phenotypic plasticity. Thus, using Nanopore long reads and 
Illumina PE150 short reads, we assembled a high-quality 
macronuclear genome of Glauconema sp1 LHA0827 with a size 
of 91.27 Mbp, containing 159 contigs without gaps, with N50 1.19 
Mbp and the longest contig being 4.29 Mbp (Fig. 2A and B; Table 2; 
Supplementary Table S8) (see assembling details in Materials and 
Methods, Supplementary Fig. S3). The number of contigs with at 
least one telomere (telomere sequence repeats ([C4A2]n)) in the G. 
sp1 LHA0827 genome is 89% of the total contig number (39% for 
those with two telomeres) (Table 2; Supplementary Table S8). 

Using transcriptome-based, homology-based, and de novo gene-
prediction pipelines, we annotated 21 115 genes for the macronu-
clear genome, with a BUSCO score with a genome model of 88% 
and 25% G/C content (Fig. 2A; Table 2). The gene number, G/C 
content, and other genomic features are comparable to those 
for other ciliate genomes in the same Oligohymenophorea class, 
while greatly differ from the nanochromosomal genomes with 
low N50 in the Spirotrichea class (Table 3). The mean gene length 
is 2.15 kbp (Fig. 2C and D; not including UTRs). On average, each 
gene contains ∼4 exons, with a median size of 240 bp (Fig. 2E), 
and ∼3 introns with a median size of 69 bp (Fig. 2F). We also 

identified 35 rRNA and 445 tRNA genes (Table 2). As in Tetrahymena 
thermophila, TGA is the only stop codon, while TAA and TAG are 
both reassigned to encode glutamine (Supplementary Table S9). 

The linear mitochondrial genome is 53 226 bp in size with 40 
protein-coding genes, 6 tRNA and 3 rRNA genes (Supplementary 
Fig. S5A; Supplementary Table S10). It contains central repeat 
regions, but lacks telomeric repeats, in contrast to the macronu-
clear genome (Supplementary Tables S8 and S10). The mitochon-
drial codon usage is also different from that of the macronuclear 
genome, with TGA encoding tryptophan and TAA/TAG being stop 
codons (Supplementary Table S9). 

Low variation of Glauconema phenotypic 
plasticity inferred from comparison between 
congeners 
To explore the variation of phenotypic plasticity in Glauconema, 
we isolated another species, Glauconema sp2 LJL43, from coastal 
waters of Hainan Province, southern China, and compared 
its phenotypic plasticity with that of G. sp1 LHA0827. G. 
sp2 LJL43 has a similar life cycle and swimming patterns to 
G. sp1 LHA0827 (Fig. 1J and K; Table 2; Supplementary Text; 
Supplementary Fig. S6; Supplementary Tables S1, S6, S8, S9, and 
S11). Whereas there is a significant difference in the body 
shape of trophonts between G. sp2 LJL43 and G. sp1 LHA0827 
(t-test, P = 3.51 × 10−16), there is no difference for tomites. The 
same tomite body shape and swimming speed in two species 
suggest that they are experiencing similar selective regimes for 
this particular body shape and swimming, or that the limit of 
phenotypic plasticity has been reached, meaning that tomites 
cannot become narrower or swim faster, although data from more 
species are needed to reach a conclusion. 

To further investigate the evolution of Glauconema spp., we 
performed de novo assembly and annotation on G. sp2 LJL43 and 
obtained its macronuclear genome with a BUSCO score of 88%, 
totaling 98.87 Mbp in size. The mitochondrial genome encodes 
43 complete protein-coding genes (Supplementary Fig. S5B; 
Supplementary Table S12). We then compared the macronuclear 
genomes of G. sp1 LHA0827 and G. sp2 LJL43 by first performing 
collinearity analyses (Figs 2A and 3A; Supplementary Fig. S6H). 
Few collinear blocks were observed within each genome (Fig. 2A; 
Supplementary Fig. S6H). However, 8964 gene pairs were detected 
with collinearity between the two genomes (Fig. 3A), representing 
43% and 31% of the total number of genes for G. sp1 LHA0827 and 
G. sp2 LJL43, respectively, which is equivalent to 22% and 25% of 
their genome sizes, demonstrating the high divergence between 
the two species. 

We also conducted gene-family analysis on the macronuclear 
genomes of G. sp1 LHA0827, G. sp2 LJL43, and seven other ciliates. 
In total, we identified 29 398 gene families. The high similarity 
in gene families between the two Glauconema genomes was con-
sistent with their almost identical phenotypes and life histories 
(Fig. 3B). As expected, the ultrametric tree, calibrated with the 
time points from the Timetree database, indicated that they are 
the closest to each other among the nine ciliates, and the diver-
gence of the two Glauconema species from the common ancestor 
occurred ∼130 million years ago (Fig. 3B). 

A gene family comprises multiple paralogs originating from the 
duplication of a single ancestral gene, typically sharing similar 
functions. Over evolutionary time, members within the family 
can increase (expansion) or decrease (contraction), which could 
be associated with natural selection, with beneficial gene fam-
ilies expanding under positive selection, and contracting gene 
families reflecting loss by non-functionalization and genetic drift
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Figure 2. Genomic features of Glauconema sp1 LHA0827. (A) Characteristics of the assembled contigs of G. sp1 LHA0827. a–f represent the contigs, the 
distribution of gene density (corresponding to the color legend on the up-left corner), depth of coverage of Nanopore sequences, depth of coverage of 
Illumina sequences, GC density and GC skew calculated in 20 kbp sliding windows (5 kbp step size). The interconnecting lines represent collinear 
genes within the genome. (B, C) The distributions of contig length and gene length with introns. (D–F) The distributions of gene number per contig, 
exons per gene, and the intron length. 

Table 2. The macronuclear genomic features of the two Glauconema species. 

Species G. sp1 LHA0827 G. sp2 LJL43 

Genome size (bp) 91 273 816 98 872 637 
Contigs number 159 181 
N50 (bp) 1 185 523 1 461 257 
N70 (bp) 571 647 586 454 
Longest contig (bp) 4 293 306 4 082 163 
Mean G/C content 25% 23% 
Gaps 0 0 
2 telomeres 62 122 
1 telomere 80 51 
Number of contigs with 18S rRNA genes 1 14 
G/C content of contigs with 18S rRNA genes 39% 38% 
Gene number 21 115 28 909 
Gene length (bp) 2152 2275 
rRNA number 35 164 
tRNA number 445 503 
Gene BUSCO 86% 94% 

Table 3. The details of macronuclear genomes of ciliates in the comparative genomic analyses. 

Species G N N50 L GC% Gene No. D 

Euplotes vannus 84.8 37 486 2.7 0.04 37 43 338 511 
Glauconema sp1 LHA0827 91.3 159 1186 4.30 25 21 115 231 
Glauconema sp2 LJL43 98.9 181 1461 4.10 23 28 909 292 
Halteria grandinella 64.0 40 422 2.1 0.07 43 17 815 278 
Ichthyophthirius multifiliis 47.8 1375 66 0.40 16 8062 169 
Oxytricha trifallax 67.2 22 363 3.7 0.06 31 24 578 366 
Paramecium tetraurelia 72.1 697 413 1.00 28 39 642 548 
Pseudocohnilembus persalinus 55.5 288 368 2.00 19 13 186 238 
Tetrahymena thermophila 103.0 1148 521 2.20 22 26 460 256 

G, Genome size (Mbp); N, Contigs number; N50 in kbp; L, Longest contig (Mbp); GC%, mean G/C content; Gene No., Gene number; D, Gene density (genes/Mbp). 
E. vannus, H. grandinella, and  Oxytricha trifallax belong to the class Spirotrichea; Glauconema sp1 LHA0827, Glauconema sp2 LJL43, Ichthyophthirius multifiliis, 
Paramecium tetraurelia, Pseudocohnilembus persalinus and Tetrahymena thermophila all belong to the class Oligohymenophorea. Accession numbers are shown in the 
Materials and methods section. 
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Figure 3. Comparative genomics and evolution of Glauconema spp. macronuclear genomes. (A) The co-linearity of two Glauconema macronuclear 
genomes. (B) The gene-family comparisons. Dynamic evolution of gene families among nine ciliates (the all-to-all blast to determine the similarities 
between genes). The numbers at the bottom represent the inferred time in million years (based on correlated rates clock). The left and right numbers 
under the branches represent the expanded or contracted gene families in each linage, respectively. Note that due to the high similarity of the 
genomes of the two Glauconema species, numerous unique gene families shared between them lead to the inference of many contracted gene families 
in other species. (C) The GO enrichment of genes in expanding gene families of Glauconema (Supplementary Table S13). BP and MF represent Biological 
Process and Molecular Function, respectively. 

[ 116–119]. Based on the gene families of the nine ciliates stud-
ied, we infer that the common ancestor of the two Glauconema 
species underwent expansions of 814 gene families (including 
32 DEGs, Supplementary Tables S3 and S4) and contractions of 
284 gene families. The expanded genes are involved in rapid 
cellular responses to extracellular signals, resistance to intra-
cellular toxic substances, lifespan, cell cycle, and so on (Fig. 3C; 
Supplementary Table S13). 

Phenotypic plasticity is under strong purifying 
selection 
Certain genes show differential expression at different life stages, 
indicating a possible association with the molecular mechanisms 
underlying phenotypic plasticity. Gene-enrichment analyses on 

these differentially expressed genes (DEGs; 246 significantly up-
regulated genes and 498 down-regulated genes in tomites vs. 
trophonts) in G. sp1 LHA0827 indicate that many necessary 
biological processes are down-regulated in tomites, including 
protein translation and modification, ribosome assembly, electron 
transport chain, mRNA splicing, and fatty acid beta-oxidation 
(Fig. 4A; Supplementary Table S3). Consistently, the genes asso-
ciated with many core cellular components, such as ribosomes, 
nucleosomes, respirasome, and axoneme for cilia movement, also 
have decreased expression (Fig. 4D; Supplementary Table S14). In 
contrast, autophagy is significantly up-regulated in tomites. We 
speculate that such up-regulation cuts down energy for major 
life activities and reallocates it for temporary food searching 
(Supplementary Table S3). This is highly consistent with the
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Figure 4. Differential expression and enrichment analyses. (A, B) The differential gene expression between tomites vs. trophonts (A) and resting cysts 
vs. trophonts (B) of Glauconema sp1 LHA0827. When compared with trophonts, circles represent genes that are significantly down-regulated, and 
triangles represent genes that are significantly up-regulated in tomites/resting cysts (A/B). Significant difference: |log2(Fold change)| ≥ 1 &  Padj < .05. 
(C) The GO enrichment and KEGG (KG) pathway enrichment analyses of significantly down-regulated genes in resting cysts, (vs. trophonts). BP, CC, and 
MF represent Biological Process, Cellular Component and Molecular Function, respectively. (D) The GO enrichment of down-regulated genes in tomites, 
when compared with trophonts (Supplementary Table S14). The outermost blocks represent the GO IDs. The numbers in the middle circle indicate the 
gene counts enriched for the corresponding GO ID, with different colors denoting distinct P (color legend shown at the center). The innermost circle 
illustrates the proportion of significantly differentially-expressed genes enriched relative to the total number of genes associated with the GO ID. 

survival curve of tomites starting to drop 24 h after the initial 
appearance of starvation ( Fig. 1L). Thus, tomites are in a near-
death state. 

Based on our observations and previous literature, resting 
cysts are generally transformed directly from trophonts [61]. We 
thus analyzed the differential gene expression between resting 
cysts and trophonts and identified 344 significantly up-regulated 
and 369 down-regulated genes in resting cysts compared with 
trophonts (Figs 1D and 4B; Supplementary Table S4). There 
were only a few biological functions enriched in significantly 

down-regulated genes (Fig. 4C; Supplementary Table S15). 
Translation and respiration are among the most down-regulated 
molecular functions, with decreased expression in mRNA binding, 
electron transport chain, and respiratory energy supply. 

To ensure the reliability of our differential gene-expression 
analysis, we performed RT-qPCR and RNAi to support the 
expression patterns and investigate phenotypic plasticity effects 
of two genes (tig082700000136.101, Phosphoglycerate Kinase 1, 
pgk1, involved in glycolysis; tig082700000279.64, RNA binding 
protein; Supplementary Table S3), which were drawn from the top
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Figure 5. qPCR and RNAi results of Glauconema sp1 LHA0827. (A) The relative expression levels of trophonts vs. tomites and the relative chromosomal 
copy number for two genes (pgk1 and RNA binding protein). ∗∗∗P < .001, ∗∗P < .01, nsP > .05, based on t-tests. (B) The mean length/width ratios of the 
cells at different time points under knockdown (RNAi) and Control conditions with constant food density (OD600 = 0.1). (C, D) The relative expression 
levels of trophonts vs. tomites for pgk1 and RNA binding protein at different time points under knockdown (RNAi) and Control conditions. (E, F) The  
cell densities over time of the two groups (RNAi or Control) for the two target genes (E: pgk1; F: RNA binding protein) in the chemostat-like culturing 
system. 

eight down-regulated genes in tomites. The expression patterns of 
the RT-qPCR supported those from the low-input RNAseq-based 
differential expression analysis ( Fig. 5A; Supplementary Tables S3 
and S16). Consistently, RNAi experiments also demonstrated that 
the body shape changed in the expected direction with the RNAi-
induced changes in expression of these two genes (Fig. 5B–F; 
Supplementary Tables S5, S16, and S17). These findings thus 
supported the association of phenotypic plasticity with multiple 
differentially expressed genes. 

Previous studies have suggested that ciliates under stress may 
temporarily increase the copy number of specific chromosomes, 
in which some possibly adaptive regulatory genes reside [120]. 
For pgk1 and the RNA-binding protein, we analyzed their copy 
number changes at the DNA level of trophonts vs. tomites of 
Glauconema sp1 LHA0827, using qPCR at each life stage. We find 
that neither gene has a significant difference at the DNA level 
in the two life stages (Fig. 5A). This suggests that the phenotypic 
plasticity of Glauconema is not regulated by copy number changes 
at the DNA level, which is a more energy-consuming task, but 
by directly altering gene-expression levels. This is highly consis-
tent with that pgk expression at the mRNA level is under post-
transcriptional regulation in the parasitic protozoa Trypanosoma 
brucei [121]. 

In order to explore the evolutionary forces on the DEGs asso-
ciated with phenotypic plasticity, we calculated the ratios of the 
number of non-synonymous substitutions per non-synonymous 
site to the number of synonymous substitutions per synonymous 

site (dN/dS) for the homologous DEGs in the two Glauconema 
genomes. The Jukes-Cantor model was applied to account for mul-
tiple substitutions, and only genes with dS < 0.75 were considered 
due to the long evolutionary history. dN/dS values of almost all 
DEGs are much <1 (median 0.04), and not significantly different 
from those of non-DEGs (P > .05; Supplementary Table S18), 
indicative of strong purifying selection, although the possibility 
that other selective forces exist in genes not passing the 
filters cannot be excluded. As expected, phenotypic plasticity 
is under functional constraint and preserved over long-term 
evolution. 

Discussion 
We explored the regulation and evolution of phenotypic plas-
ticity, by deriving the reaction norm, de novo assembling and 
annotating macronuclear genomes, analyzing and verifying dif-
ferential gene expression between life stages, and conducting 
comparative genomic analyses of the marine ciliates Glauconema 
spp. We discovered a power-law reaction norm of body shape vs. 
density of the food bacteria. However, the extent to which feeding 
preference for different bacteria or other physicochemical factors 
(e.g. pH and temperature) alters the phenotypic plasticity remains 
an open question. Measuring the phenotypic responses to more 
environments is thus needed for a thorough characterization of 
phenotypic plasticity, necessary for testing whether phenotypic 
plasticity is adaptive.
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Our study revealed hundreds of differentially expressed genes 
associated with trophont-tomite transformation, and verified two 
of them with RT-qPCR and RNAi, along with canonical genes, 
such as mTOR (a crucial kinase regulating cell growth; [122, 123]), 
stably but not differentially expressed in any life stage, collectively 
showing that the phenotypic responses involve actions of numer-
ous genes at the cellular level. However, the causal relationship 
between phenotypic plasticity and changes in gene expression, 
or whether the change in expression precedes the phenotypic 
alteration or occurs as a consequence thereof, needs further 
exploration. Also, whether more genes are involved in the regu-
lation of phenotypic plasticity under a wider range of culturing 
conditions remains an open question. Therefore, it is too early 
to conclude that phenotypic plasticity relies solely on expression 
changes in the genes we tested. Also, we have yet to identify the 
switch gene in Glauconema that triggers the phenotypic plasticity 
response to starvation, as well as the role of epigenetic factors. The 
evolutionary processes acting on key genes also remain unclear, 
and additional population genomic data would be valuable, espe-
cially for a quantitative genetics analysis of this phenomenon 
[124–126]. However, due to the extremely low abundance of Glau-
conema in natural seawater (Supplementary Fig. S2B), we were 
only able to obtain two isolates for analysis. Despite these, the 
highly similar reaction norms and life history features, as well as 
the predominantly dN/dS values <1 of DEGs between life stages, 
support that the phenotypic plasticity response to food bacteria 
density is likely to be a conserved trait, which could be maintained 
by natural selection over the long evolutionary history. 

Some genes show up-regulation upon encystment (Fig. 1B and D; 
cells shrink during this process), with enrichment in one 
particular pathway associated with human muscle cell atrophy 
(amyotrophic lateral sclerosis, ko05014). They function as 
axonemal proteins and/or energy or plasma-membrane choline 
transporters in resting cysts and also have homologues in most 
model ciliates (Supplementary Table S19). Such findings might 
provide a novel research model for studying the molecular 
genetics associated with cell-shrinkage. 

We verified two genes’ function in phenotypic plasticity 
(pgk1, and the RNA binding protein tig082700000279.64), out of 
hundreds of differentially-expressed genes. pgk1 is ubiquitously 
present across eukaryotes. Many studies have demonstrated that 
increased pgk1 expression is conducive to energy synthesis and 
autophagy processes (genes related to autophagy, such as atg6, 
are known to exist in ciliate genomes) [127–130]. Additionally, 
pgk1 has been shown to interact with genes associated with 
resistance to external environments, such as Hsp90 protein, 
which plays a critical role in tolerance to high temperatures in 
Tetrahymena [59, 131]. Thus, we hypothesize that lower energy 
synthesis in the tomite stage of Glauconema results from decreased 
pgk1 expression, which is induced by food bacteria shortage. 
Such process could be done so by pgk1 regulating the ratio 
of ATP and AMP [132, 133]. Although more tests on the direct 
causal effects of these genes are needed, our RNAi results 
support this hypothesis (Fig. 5B and C). ATP depletion has been 
reported to affect the expression of multiple genes and to alter 
transcriptional regulation in different cellular contexts. Knocking 
down the RNA-binding protein (tig082700000279.64) also reduces 
cell metabolism (Fig. 5B and D). Although the function of the RNA-
binding protein has not been specified, a homologous protein has 
been annotated in Tetrahymena [134]. 

We identified additional differentially expressed genes possibly 
associated with phenotypic plasticity. Whereas the prevalence 
of these genes in ciliates is notable, their precise functions 

Figure 6. A schematic model of phenotypic plasticity regulation in 
Glauconema. The plus sign in the circle indicates genes that are 
significantly up-regulated in tomites compared with trophonts, while 
the minus sign in the circle indicates genes that are significantly 
down-regulated. A down arrow signifies a decrease in the substance or 
process, whereas an up arrow indicates an increase. 

within Glauconema have yet to be investigated. As a result, 
understanding their potential impact on the life history of 
Glauconema can now only be inferred through extrapolation from 
their established functions in distantly related taxa. Among 
these genes, we found OGFr (opioid growth factor receptor; 
tig082700000016.335), a transmembrane protein expressed in 
various tissues, including the nervous and immune systems 
of mammals. Although ciliates lack an immune system per 
se, they possess a hormonal system that may function partly 
like the immune system [ 135]. Previous studies have shown 
that up-regulation of OGFr expression affects DNA synthesis 
[136], and we observed a significant increase in its expression 
in tomites compared to trophonts (Supplementary Table S3), 
suggesting that it may play a role in inhibiting cell division 
and reproduction of tomites (Fig. 6; cell division of tomites was 
never observed or reported). Another transmembrane protein 
identified in our study is PLG-RKT (plasminogen receptor (KT); 
tig082700000116.6), which may respond to external signals and 
regulate cellular responses to starvation [137]. Up-regulation 
of PLG-RKT may activate the signal transduction process of 
histidine kinase (HKs), leading to phosphorylation of histidine and 
subsequent phosphotransfer to an aspartate residue of relevant 
response regulators [138, 139]. Phosphorylated aspartate has 
been shown to enhance autophagy, which is consistent with 
our findings of significantly up-regulated expression of genes 
associated with autophagy in tomites (Supplementary Table S3) 
[140]. We speculate that such up-regulation cuts down energy 
for major life activities and reallocates it for temporary food 
searching. Moreover, tomites transform into trophonts in the 
presence of sufficient food bacteria, at which point the autophagy 
pathway in Glauconema may be curtailed. Based on the above, we 
propose a tentative schematic model for the genetic regulation 
of phenotypic plasticity in this marine unicellular eukaryote, 
while acknowledging the existence of unresolved factors and 
unexplored variables (Fig. 6). 

We speculate that tomites are in a state of decline and are 
specifically for searching food, as they tend to vanish soon after 
emerging (Fig. 1L), especially in the two species studied here, 
which do not typically form resting cysts in lab cultures. Binary 
fission of tomites was observed neither in our initial study on 
Glauconema [60], nor in any previous reports, so they represent 
a terminal state analogous to resting cysts. Tomites exhibit a 
possibly optimally-energy-distributed swimming style by hover-
ing in the water layer and suddenly dashing. They either die 
if they fail to find more food bacteria, or they transform into
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trophonts if food bacteria are found. Gene enrichment analyses 
based on differentially expressed genes demonstrate that tomites 
are indeed in a dying state, as necessary physiological activities 
and cellular functions are significantly decreased and autophagy 
is up-regulated (Fig. 4D; Supplementary Table S3). 

In conclusion, despite the crucial role in the ocean’s ecosystem, 
understanding the life-history evolution and response to environ-
mental changes of marine ciliates has been a daunting task due 
to the lack of model organisms and research resources. However, 
this work provides a theoretical and technical framework for 
investigating the phenotypic plasticity of these tiny unicellular 
residents in coastal waters, and finds that phenotypic plasticity 
is preserved by purifying selection. By developing experimental 
and multi-omics resources, this study will help reveal molecular-
level responses of non-model ciliates to various environmental 
changes. Also, the evolutionary strategies of these organisms may 
hold the key to their survival and evolution in the rapidly changing 
marine environment due to climate change. This knowledge offers 
new insights into the intricate workings of the inhabitants of the 
ocean ecosystem and the importance of phenotypic plasticity in 
the face of environmental change. 
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