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Abstract

Spontaneous mutations power evolution, whereas large-scale structural variations (SVs) remain poorly studied, primarily be
cause of the lack of long-read sequencing techniques and powerful analytical tools. Here, we explore the SVs of Escherichia 
coli by running 67 wild-type (WT) and 37 mismatch repair (MMR)–deficient (ΔmutS) mutation accumulation lines, each ex
periencing more than 4,000 cell divisions, by applying Nanopore long-read sequencing and Illumina PE150 sequencing and 
verifying the results by Sanger sequencing. In addition to precisely repeating previous mutation rates of base-pair substitu
tions and insertion and deletion (indel) mutation rates, we do find significant improvement in insertion and deletion detection 
using long-read sequencing. The long-read sequencing and corresponding software can particularly detect bacterial SVs in 
both simulated and real data sets with high accuracy. These lead to SV rates of 2.77 × 10−4 (WT) and 5.26 × 10−4 

(MMR-deficient) per cell division per genome, which is comparable with previous reports. This study provides the SV rates 
of E. coli by applying long-read sequencing and SV detection programs, revealing a broader and more accurate picture of 
spontaneous mutations in bacteria.
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Significance Statement
The complexity of eukaryotic and prokaryotic genomes raises challenges for detecting structural variations (SVs) with 
high-throughput sequencing data. Here, we compared SV detection results based on short- and long-read sequencing 
combined with multiple analysis callers, identifying the most suitable strategies for different SVs for simulated and real 
data of Escherichia coli. Our results provide reliable SV detection procedures for future research on bacterial mutations.

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Spontaneous mutations occur in all living organisms and 
are the primary source of genetic variation. Common types 
of mutations are base-pair substitutions (BPSs), small inser
tions and deletions (indels), and large-scale structural varia
tions (SVs). Most previous studies have focused primarily on 
BPSs and small indels due to sequencing technology limita
tions (Lee et al. 2012; Lynch et al. 2016; Long et al. 2018b; 
Pan et al. 2022). Although neglected or unresolved, early 

studies have found that many human diseases are asso
ciated with SVs. For example, duplication fragments of 
human chromosome 17p lead to Charcot–Marie–Tooth 
disease type 1A, and large homozygous deletions of the 
2p13 region result in juvenile nephronophthisis (Lupski 
et al. 1991; Konrad et al. 1996). SVs also play essential roles 
in genome evolution: some beneficial SVs may help organ
isms adapt to their environments, and some copy number 
variant–dominated SVs are positively selected with higher 
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frequencies (Emerson et al. 2008; Iskow et al. 2012; 
Kondrashov 2012). Differences in large-effect SVs of genes 
controlling specific traits at the population level imply that 
SVs may be associated with the formation of new species 
(Chan et al. 2010). Because most bacterial genomes are 
haploid, the fitness effects of SVs in bacteria are even 
more significant than those in humans. SVs have a pro
found impact on the evolution of bacteria, particularly for 
many pathogenic species, where the pathogenicity or 
new virulence phenotypes are associated with SV-carrying 
critical genes that are frequently caused by transposition 
or recombination events (Lieberman et al. 2011; Damkiær 
et al. 2013; Lee et al. 2016).

Previous studies have detected SVs mostly by using short 
paired-end reads (Ye et al. 2009; Iqbal et al. 2012; Rausch 
et al. 2012; Barrick et al. 2014; Deatherage and Barrick 
2014; Fan et al. 2014; Layer et al. 2014; Chen et al. 
2016; Lee et al. 2016; Tian et al. 2018). Such strategy has 
played a key role in the identification of SVs, revealing their 
diversity in individuals to population (Ma et al. 2021; Zhao 
et al. 2021a; Chen et al. 2022). Based on such analytical 
strategies, E. coli insertion sequence (IS) elements were re
ported to have an insertion rate of 3.5 × 10−4 and a recom
bination rate of 4.5 × 10−5 per genome per generation, and 
the transposition rate in E. coli measured by other methods 
was about 10−5 (Sousa et al. 2013; Lee et al. 2016). 
However, the accuracy of such explorations may be af
fected by the inherent defects of short-read sequencing 
(Putze et al. 2009; Lee et al. 2014; Mahmoud et al. 
2019). In contrast, the combination of long-read sequen
cing and more advanced bioinformatics tools can provide 
unique anchors in the repeat regions of the reference gen
ome and achieve better results for identifying breakpoints 
and more types of SVs (Cretu Stancu et al. 2017; 
Mahmoud et al. 2019). Such strategy has been greatly op
timized for identifying SVs in complex and nested se
quences or low-depth sequencing data (Sedlazeck et al. 
2018; Tham et al. 2020). Consequently, long-read sequen
cing provides a more complete and precise view of de novo 
spontaneous mutations at all scales, although such trials 
are rarely performed.

Mutation accumulation (MA) combined with whole- 
genome sequencing is the most classical strategy for deter
mining the rate and spectrum of spontaneous mutations 
(Foster 2006; Lee et al. 2012). Single-individual transfers re
peatedly bottleneck large sets of parallel lines, so that gen
etic drift dominates selection, and even deleterious 
mutations can be accumulated, eventually providing nearly 
unbiased mutational features. MA of DNA mismatch repair 
(MMR) defective strains can further provide an accurate pic
ture of mutations before the specific repairing of MMR (Iyer 
et al. 2006; Lee et al. 2012; Long et al. 2016; Long et al. 
2018a). In this study, we tested and identified better strat
egies using in silico simulation, MA of wild-type (WT) and 

MMR-deficient E. coli K-12 MG1655, and Nanopore long- 
read and Illumina PE150 sequencing for analyzing bacterial 
SVs.

Results
To detect SVs in the E. coli K-12 MG1655 genome, we ac
cumulated de novo mutations by daily single-colony streak
ing 80 WT MA lines and 40 MMR-defective (ΔmutS) lines 
from 1 WT ancestor cell and 1 ΔmutS ancestor cell, respect
ively. Eventually, 67 WT and 37 ΔmutS MA lines were used 
for the final analysis after removing low-coverage, cross- 
contaminated lines or those with mutations falling in other 
repair systems (supplementary table S1, Supplementary 
Material online). Each WT MA line experienced about 
4,480 cell divisions and was sequenced to a mean depth 
of coverage 99× (standard error, SE: 5.56) and 4,320 cell 
divisions and 123× (SE: 9.34) for the ΔmutS MA lines. 
More than 99% of the genomes of all the MA lines were 
covered with high-quality reads (supplementary tables S2 
and S3, Supplementary Material online). We also per
formed Nanopore long-read sequencing on 19 WT and 
18 ΔmutS MA lines as well as their ancestors (1 ΔmutS 
line was removed due to 3 mutations in the repair gene 
mutT) with ∼1 Gbp to 3 Gbp for each line (supplementary 
table S4, Supplementary Material online). The features of 
BPSs and small indels are highly consistent with previous 
studies, confirming the high repeatability of the E. coli mu
tation–accumulation experiments (supplementary file S1, 
figs. S1 and S2, and tables S2, S3, and S5–S13, 
Supplementary Material online).

Evaluating the SV Detection Pipelines with Simulated 
Data

We first evaluated the reliability of the widely used SV de
tection pipelines by running them on simulated short-read 
and long-read data sets with mock mutation preset (see 
details in Materials and Methods). For the simulated short- 
read data set, breseq (v-0.35.1) performs the best for ana
lyzing deletions, with sensitivity and precision both close to 
100% (table 1, fig. 1, and supplementary tables S14 and 
S15, Supplementary Material online). Considering that 
breseq is mainly used to identify deletions and insertions 
mediated by mobile elements, we also used Manta 
(v-1.6.0) to detect other SVs besides deletions, such as in
sertions, tandem duplications, and inversions. The analysis 
achieved satisfying results for the precision of tandem 
duplications and sensitivity of inversions (tables 1 and 2, 
fig. 1, and supplementary tables S14 and S15, Supplementary 
Material online). Similarly, for the simulated long-read 
data set, Sniffles (v-1.0.12) was chosen because it outper
formed other programs in SV detection, as shown in the 
testing results of different SV callers (supplementary 
tables S15 and S16, Supplementary Material online) 
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(Sedlazeck et al. 2018; Liu et al. 2020; Okazaki et al. 2022), 
especially for deletions and tandem duplications (fig. 1, ta
bles 1 and 2, and supplementary tables S14, and S15, 
Supplementary Material online). SV analyses on simulated 
data show that breseq detects deletions with high sensitiv
ity and precision, Manta performs ideally on other SV types 
with short reads as input, and Sniffles is appropriate for de
tecting SVs using long-read sequencing (table 1, fig. 1, and 
supplementary tables S14 and S15, Supplementary 
Material online). The SV results from long-read sequencing 
are more reliable than those from short-read sequencing, 
as shown by the universally high F1 scores of most types 
of SVs (table 1 and supplementary table S17, 
Supplementary Material online), which is consistent with 
previous studies (Merker et al. 2018; Lesack et al. 2022). 

We also find that the number of SVs of certain types in 
the genome can affect the performance of the software 
to some extent. For example, using the short-read pipeline, 
sensitivity tends to increase with more tandem duplications, 
whereas for the long-read pipeline, the increase of inver
sion will greatly reduce the sensitivity and precision (fig. 
1). Besides, we also note that even short-read sequencing 
can give highly reliable results for deletions and short inver
sions in simulated genomes. We then finalize the pipelines 
and use them on the Illumina and Nanopore sequences of 
the MA lines we ran.

In addition, to ensure the transferability of the analysis 
pipeline for the simulated data, we similarly set up and ana
lyzed the 0-variant mock genome. Based on the same 
short-read and long-read analysis pipelines, we did not de
tect any SVs, which confirmed the reliability of our 
pipelines.

Genomic SV Rate of E. coli Based on Nanopore and/or 
Illumina Sequencing

We applied breseq and Manta to detect SVs, using the 
Illumina PE150 sequences of the final-evolved 67 WT and 
37 ΔmutS MA lines. Among these, 19 WT and 18 ΔmutS 
MA lines were also sequenced with a Nanopore 
PromethION sequencer, and SVs were detected with 
Sniffles (supplementary table S4, Supplementary Material
online, and table 2). For the SVs detected by the short-read 
pipelines, 82 (56.9%) out of 144 for the WT and 48 
(49.5%) out of 97 for the ΔmutS are verified; 25 (100%) 
out of 25 for the WT and 54 (96.4%) out of 56 for the 
ΔmutS with the pipelines for long-read sequencing are con
firmed (tables 3 and 4 and supplementary table S18, 
Supplementary Material online). For short-read pipelines, 
the mean of true-positive SVs per WT or ΔmutS MA line 
is 1.22 or 1.23, respectively, and for long-read pipelines, 
1.32 per WT line and 3.00 per ΔmutS line (table 3). 
Compared with the total number of SVs from the short- 
read pipelines, those detected by the Nanopore sequencing 

Table 1 
The Precision, Sensitivity, and F1 Score of Different SV Callers Using Simulated Data Sets. Mean and SE are the Mean and SE of the Above Measures for the 
3 Simulated Genomes

Insertion Deletion Tandem Duplication Inversion

Evaluator Caller Mean SE Mean SE Mean SE Mean SE

Precision breseq 0.3990 0.0513 1.0000 0 — — — —
Manta 0.0309 0.0021 0.9863 0.0031 0.9782 0.0015 0.9412 0.0121
Sniffles 0.1337 0.0012 0.9633 0.0072 0.9107 0.0074 0.4941 0.0404

Sensitivity breseq 0.0220 0.0042 0.9693 0.0111 — — — —
Manta 0.0780 0.0057 0.9757 0.0086 0.7960 0.0161 0.9770 0.0011
Sniffles 0.3367 0.0031 0.9710 0.0087 0.9320 0.0094 0.9720 0.0029

F1 score breseq 0.0417 0.0077 0.9843 0.0057 — — — —
Manta 0.0443 0.0031 0.9808 0.0036 0.8774 0.0100 0.9586 0.0066
Sniffles 0.1920 0.0013 0.9671 0.0080 0.9212 0.0080 0.6516 0.0354

FIG. 1.—The sensitivity versus precision of SV detection for the 12 si
mulated data sets. Among them, breseq and Manta indicate results from 
short-read data sets, and Sniffles represents results from long-read data 
sets.
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pipelines are small because only part of the MA lines were 
randomly chosen for costs concern. Consistent with the re
sults from simulated data, the high validation rate and 
number of SVs from the Nanopore data demonstrate the 
superiority of long-read sequencing in SV detection. This 
is in strong contrast to the ultra-high false-positive rate of 
inversions and tandem duplications from short-read se
quencing (fig. 2A). Nonetheless, the precision for Sniffles 
detecting insertions remains low (8.24% for WT and 
6.00% for ΔmutS), even with the long-read strategy 
(supplementary table S17, Supplementary Material online). 
In addition, we also find that the medium- and long-length 
SVs, especially the insertions and deletions, are preferably 
detected, whereas the false-positive rate of the short SVs 
is relatively high (fig. 2B and 2C and supplementary tables 
S19 and S20, Supplementary Material online). Specifically, 
for SVs with different length ranges, the false-positive rates 
based on the short-read strategy are higher than those 
from the long-read strategy, especially for short and long 
SVs (fig. 2B and 2C). Finally, we combine SV results based 
on the 2 sequencing platforms and find that 83 out of 
146 and 82 out of 133 SVs are validated in the WT and 
the ΔmutS MA lines, respectively (supplementary tables 
S19 and S20, Supplementary Material online). The number 
of SVs per WT or ΔmutS line, after combining SV results 
from the short-read and long-read strategies, is 1.24 or 
2.22. The vast majority of these true-positive SVs are short
er than 1,500 bp in E. coli (fig. 2D and 2E).

Based on the verified SVs, we calculate the genomic SV 
rate of the WT E. coli to be 2.77 × 10−4 per genome per 
cell division (95% CI: 2.95–4.34 × 10−4) and 5.26 × 10−4 

per genome per cell division for the ΔmutS (95% CI: 
7.37–10.34 × 10−4), with significant difference between 

the SV rates of the 2 strains—a sign of MMR influencing 
the major types of SVs (supplementary tables S21 and 
S22, Supplementary Material online). The WT SV rate is 
lower but still comparable with those large chromosomal 
rearrangements of E. coli reported in previous studies im
plying a low false-positive rate of the sequencing and ana
lytical pipelines (also confirmed by the above analyses on 
the simulated data sets) (Raeside et al. 2014). We calculate 
the BPS rates of the WT and the ΔmutS to be 9.00 × 10−4 

and 8.12 × 10−2 per genome per cell division, respectively. 
The SV rates are thus ∼31% and 0.65% of the BPSs rates 
for the 2 strains, respectively, consistent with previous find
ings that large-scale mutations are usually less abundant 
than the small mutations (Pang et al. 2010).

Features of de novo SVs of E. coli

Interestingly, we find insertion bias among large-scale SVs in 
the WT MA lines (INSWT/DELWT = 4.86, INSΔmutS/DELΔmutS =  
1.05) (table 4, fig. 2F, and supplementary tables S19 and 
S20, Supplementary Material online). Such insertion bias of 
SVs is different from the deletion bias of small indels previously 
reported (Kuo and Ochman 2009; Lee et al. 2012; Long et al. 
2016; Danneels et al. 2018; Long et al. 2018a; Loewenthal 
et al. 2021). One previous study on SVs of the same E. coli 
WT strain found that IS-mediated insertions were more com
mon than deletions (Lee et al. 2016). However, the bias is re
versed by the SVs length in the ΔmutS MA lines, as the total 
length of deletions is about 2.78 times higher than that of 
the insertions (supplementary tables S19 and S20, 
Supplementary Material online). Consistent with small indels, 
this deletion bias in DNA length could be related to the gen
omic contraction in bacteria, especially for those hosted in 
other organisms (Gregory 2004; Merhej et al. 2009; Bobay 
and Ochman 2017). Besides, we also analyzed the distribution 
of SVs along the chromosome. For the WT, the distribution 
of insertions in the genome is approximate to uniform distri
bution, and the deletions mainly cluster in 0–0.8 Mbp and 
2–4 Mbp regions (supplementary table S23, Supplementary 
Material online). And for ΔmutS, insertions have a trend to 
cluster in 0.2–0.6 Mbp and > 3.6 Mbp regions and deletions 
in 1.2–2.4 Mbp and >4.0 Mbp regions.

We also evaluated the features of IS element–mediated 
SVs—the most common SVs in bacterial genomes—in detail. 
IS elements are common mobile genetic elements in bacteria 
and play key roles in bacterial genome diversity and evolution 
(Ooka et al. 2009). Some SVs and complex recombination 
events mediated by IS elements have been found in E. coli 
MA lines (Lee et al. 2014; Raeside et al. 2014; Long et al. 
2016). In our data sets, IS-mediated SVs dominate other 
SVs in both the WT and the ΔmutS MA lines, 70 (84.34%) 
and 43 (52.44%), respectively (table 4). The lengths of the 
IS-mediated SVs are extremely enriched around 500– 
1,000 bp (fig. 3A and 3B and supplementary tables S19 

Table 2 
The SV callers Used for Different Sequencing Platforms and SV Types

SV Types Data Sets Sequencing 
Platforms

SV Callers

Insertion Simulation Illumina breseq + Manta
Deletion breseq + Manta
Tandem duplication Manta
Inversion Manta
Insertion Nanopore Sniffles
Deletion Sniffles
Tandem duplication Sniffles
Inversion Sniffles
Insertion Real data Illumina breseq + Manta
Deletion breseq + Manta
Tandem duplication Manta
Inversion Manta
Insertion Nanopore Sniffles
Deletion Sniffles
Tandem duplication Sniffles
Inversion Sniffles
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and S20, Supplementary Material online). There is no signifi
cant difference in the IS-mediated SV rate between the WT 
and the ΔmutS MA lines.

The IS element–mediated insertion rates of the WT 
(2.20 × 10−4 per genome per cell division) and the ΔmutS 
E. coli (2.44 × 10−4 per genome per cell division) (table 4) 
are comparable with those reported in previous studies, for 
example, 3.5 × 10−4 (95% CI: 3.2 × 10−4–3.7 × 10−4) per 
genome per cell division in the same E. coli strains (Sawyer 

et al. 1987; Lee et al. 2016; Vandecraen et al. 2017; 
Consuegra et al. 2021). Among the IS-mediated SVs in the 
WT and the ΔmutS MA lines, transpositions by IS5, IS1, 
and IS2 have the top 3 rankings, with IS5 elements account
ing for ∼40% (fig. 3C and D and supplementary tables S19 
and S20, Supplementary Material online). IS5 elements can 
insert the upstream or downstream of some operons to ac
tivate the expression of flagellar genes and glycoside metab
olizing genes and thus indirectly alter the motility and 
glycoside utilization of E. coli (Schnetz and Rak 1992; 
Barker et al. 2004; Martinez-Vaz et al. 2005; Strauch and 
Beutin 2006; Wang and Wood 2011). Therefore, the high in
sertion rate of IS5 elements may be important in the migra
tion and the niche evolution of bacteria. In addition, we find 
a significant correlation between the proportion of 1 type of 
IS elements (out of all IS elements mediating SVs) and their 
copy numbers in the reference genome (fig. 4). In other 
words, the more IS elements of the same type in the gen
ome, the more frequently they will mediate SVs.

Discussion
In this study, de novo spontaneous mutations of E. coli 
MG1655, especially the SVs, are extensively studied via dif
ferent sequencing and analytical strategies. We analyze 
104 final MA lines, including 67 WT and 37 ΔmutS lines. 
The mutation rates of BPSs and small indels are highly con
sistent with previous studies (supplementary tables S2, S3, 
and S13, Supplementary Material online) (Lee et al. 2012; 
Foster et al. 2015; Long et al. 2016). For the SV detection, 
we conclude that the strategy based on long-read sequen
cing and analysis is generally superior to that based on short 
reads in both simulated and real data (figs. 1 and 2A–C, 
tables 1 and 3, and supplementary tables S14, S15, and 

Table 3 
The SV Detection Results of the WT and the ΔmutS MA Lines Using Different Sequencing/Analytical Strategies

WT ΔmutS

SV Categories True Positive False Positive True Positive False Positive

Illumina 82 62 48 49
Mean per line 1.22 0.92 1.23 1.32
Insertion 68 5 31 4
Deletion 13 15 15 8
Tandem duplication 0 2 1 5
Inversion 1 40 1 32
Nanopore 25 0 54 2
Mean per line 1.32 0 3.00 0.11
Insertion 22 0 23 0
Deletion 3 0 31 0
Tandem duplication 0 0 0 0
Inversion 0 0 0 2

Because Illumina-sequenced lines (67 WT, 37 ΔmutS; supplementary Tables S2 and S3, Supplementary Material online) were partially sequenced with the Nanopore 
platform (19 WT, 18 ΔmutS; supplementary Table S4, Supplementary Material online), the total number of True Positives or False Positives from Nanopore is lower than 
that from Illumina. The bold values represent the total number of four SVs types (Insertion, deletion, tandem duplication and inversion) with different sequencing strategy.

Table 4 
The Details of Each Type of SVs in the WT and the ΔmutS MA Lines

SV Types or Status WT ΔmutS

Insertion 68 41
Mean per line 1.01 1.11
IS insertion 66 39
Non-IS insertion 2 2
Deletion 14 39
Mean per line 0.21 1.05
IS deletion 4 4
Non-IS deletion 10 35
Tandem duplication 0 1
Mean per line 0 0.03
Inversion 1 1
Mean per line 0.01 0.03
IS-mediated SV rate 2.32 × 10−4 2.69 × 10−4

95% CI for Poisson 1.82–2.95 × 10−4 1.95–3.62 × 10−4

IS insertion rate 2.20 × 10−4 2.44 × 10−4

95% CI for Poisson 1.70–2.80 × 10−4 1.74–3.34 × 10−4

IS deletion rate 1.33 × 10−5 2.50 × 10−5

95% CI for Poisson 0.36–3.41 × 10−5 0.68–6.41 × 10−5

Total insertion length 74,356 bp 44,242 bp
Total deletion length 38,568 bp 122,942 bp

The bold values represent the total number of four SVs types (Insertion, 
deletion, tandem duplication and inversion) with different sequencing strategy.
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S18–S20, Supplementary Material online). The SV rates are 
2.77 × 10−4 per genome per cell division in the WT and 
5.26 × 10−4 in the ΔmutS, which are comparable with 

those previously reported (Lee et al. 2016). However, it is 
impossible to simulate all possible SV scenarios, and the 
complexity of real genomic regions can affect the precision 

FIG. 2.—SVs detected in the WT and the ΔmutS MA lines. (A) True positives and false positives of the 4 types of SVs from different sequencing strategies. 
(B) and (C) True and false positives categorized by different lengths. (D) and (E) Length distribution of 4 types of SVs in the WT and ΔmutS lines. (F) Length- 
distribution of insertions and deletions SVs (The left-hand side of the violin plot, insertion; The right-hand side of the violin plot, deletion), and bold lines are the 
medians.
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for detecting SVs (Dierckxsens et al. 2021). Therefore, 
when applying the pipelines tested with simulated data to 
real data sets, the choices of software and parameters still 
need to be carefully refined.

Based on the simulated and the real data analyses, long- 
read sequencing is indeed more powerful in detecting all 
types of bacterial SVs, with high precision and accuracy 
compared with short-read sequencing (figs. 1 and 2A–C, 
tables 1 and 3, and supplementary tables S14, S15, and 
S18–S20, Supplementary Material online). Although the 
number of de novo SVs generated during the MA experi
ments is much smaller than those reported in studies on ex
isting SVs in natural lineages, the high precision and 
accuracy of the long-read sequencing in SV detection are 
highly consistent (He et al. 2019; Mahmoud et al. 2019; 
Mantere et al. 2019; Chawla et al. 2021; Sakamoto et al. 

2021). Analyses based on short reads show high SV false- 
positive rates in bacteria, because most software were ini
tially developed for the human genome and their algo
rithms ignore some SVs in simple repetitive regions in 
order to save computation resources (Rausch et al. 2012; 
Fan et al. 2014; Layer et al. 2014; Deatherage et al. 2015; 
Chen et al. 2016). Nonetheless, breseq and Manta are still 
useful in detecting deletions and other SVs, although 
Manta works at the cost of a high rate of false positives 
(figs. 1 and 2A–C and supplementary tables S14, S19, 
and S20, Supplementary Material online). As previously re
ported, the limitation of short-read sequencing in SV detec
tion could originate from the nearby BPSs or indels around 
the SV breakpoints (Cameron et al. 2019). Even integrating 
multiple callers, false positives are still common, and its high 
sensitivity comes at the cost of disproportionately lower 

FIG. 3.—The IS element–associated SVs of the WT and the ΔmutS MA lines. (A) and (B) IS-mediated SVs versus non–IS-mediated ones. The pie chart in 
each length range shows the proportions of IS-mediated and non–IS-mediated SVs. The proportion of different IS element–associated SVs are shown in (C) 
and (D).
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precision, that is, sacrificing precision to improve sensitivity 
(Cameron et al. 2019; Mahmoud et al. 2019).

We applied 2 alternative strategies to detect SVs in simu
lated and real MA data: short-read–based sequencing and 
calling with breseq and Manta and long-read–based se
quencing and calling with Sniffles. Apparently, different 
SV types are most amenable to different strategies regard
less of the sequencing platforms. Compared with short- 
read–based methods, the long-read–based strategy 
performs better in the insertion SVs and will support future 
research related to SV characteristics and functions (table 1, 
fig. 2A, and supplementary tables S14 and S18–S20, 
Supplementary Material online). For identifying insertions, 
the advantages also apply to eukaryotes, suggesting that 
the ability of long reads to span longer repetitive regions 
and so outperforms short-read strategies (Cretu Stancu 
et al. 2017; Huddleston et al. 2017; Wong et al. 2018; 
Liu et al. 2020; Zhao et al. 2021b). For the deletion, al
though short-read sequencing performed well for SV de
tection in simulation results, long-read sequencing has 
higher accuracy with real data (table 1, fig. 2A, and 
supplementary tables S14 and S18–S20, Supplementary 
Material online). This may be due to the high complexity 
of the real situation and may benefit from the advantage 
of long-read sequencing even with low coverage in previ
ous research (Kosugi et al. 2019). Tandem duplications 
and inversions are rare in the real data sets (fig. 2A and 
supplementary tables S14 and S18–S20, Supplementary 
Material online), suggesting that there are relatively few 
tandem duplication and inversion SVs in the MA lines. 
These results corroborate that the 2 strategies can be com
bined for thorough SV detection and even short-read se
quencing could be accurate enough using breseq and 
Manta, if deletion SV is considered only.

Previous studies on bacterial MA have primarily focused 
on characterizing BPSs and indels, and only limited 

inference about SVs based on short-read sequencing is 
available (Foster et al. 2015; Long et al. 2015; 
Kucukyildirim et al. 2016; Long et al. 2016; Strauss et al. 
2017; Tincher et al. 2017; Long et al. 2018a; Pan et al. 
2021; Wu et al. 2021). The SV detection strategy based 
on long reads has been generating numerous reliable re
sults, for example, in the metagenomic study of lake bacter
ioplanktons and for detecting potential large-scale 
assembly errors of complex bacterial genomes with long re
peat regions (Schmid et al. 2018; Okazaki et al. 2022). Our 
results also indicate that long-read sequencing, long-read 
tools, and intensive SV candidate validation with Sanger se
quencing are needed to fully characterize full-scale muta
tions in evolved MA lines (fig. 2A–C and supplementary 
tables S18–S20, Supplementary Material online).

However, although long-read detection tools have ad
vantages over short-read ones when applied to both simu
lated and real bacterial data for identifying SVs, there are 
still some issues. Because long-read sequencing has a 
high error rate, it can affect the efficiency of long-read tools 
to detect SVs (Jiang et al. 2021). In addition, SV detection 
using long-read tools is also affected by the sequencing 
depth and SV types, for example, high sequencing depth 
could even reduce the accuracy of some tools (Luan et al. 
2020; Dierckxsens et al. 2021; Lesack et al. 2022). 
Similarly, long-read tools also detect inversions unsatisfac
torily, which also needs facilitation of other algorithms 
(Parrish et al. 2013).

The strategies outlined in this study should facilitate fu
ture research that involves SV analyses. For example, stud
ies on gut microbiomes have shown that unique SVs can 
represent the genetic fingerprints of specific communities 
(Chen et al. 2021). The total length of SVs is almost 10× 
that of BPSs in our study, also demonstrating the important 
role of SVs in genome evolution (Korbel et al. 2007; 
Escaramís et al. 2015; Hämälä et al. 2021). In addition, 

FIG. 4.—The correlation between the copy number of IS elements in the reference genome and their proportion out of all IS elements mediating SVs in the 
WT and the ΔmutS MA lines.
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SVs are reported to be closely associated with bacterial 
growth and adaptation to the environment, and their 
changes can also alter the immunity and metabolism of 
the host (Zeevi et al. 2019; Wang et al. 2021). It has also 
been shown that IS-mediated SVs in a population can not 
only promote evolution but also limit evolution after a melt
down (Consuegra et al. 2021). Advanced sequencing tech
nologies combined with sophisticated programs would 
eventually push the precision and accuracy of SV detection 
to the point that would satisfy most biological studies. 
Further studies are needed in the future regarding the distribu
tion of SV fitness effects in bacteria, and such studies would 
provide more insights into long-term genome evolution.

Materials and Methods

Strains and MA Procedures

All Escherichia coli strains were in the K-12 MG1655 back
ground and generously provided by Patricia Foster’s lab. 
Eighty WT and 40 ΔmutS MA lines were initiated and cul
tured on LB agar (Solarbio, Cat. No.: L8290) at 37 °C. 
Each line was single-colony transferred daily. We trans
ferred each MA line 160 times on average, taking more 
than 5 months. In order to estimate the cell divisions be
tween transfers (Num) by the colony-forming-units, we per
formed serial dilution every 10 days, by randomly choosing 
and razor-cutting a single colony from each of the 5 lines 
for the WT and the ΔmutS MA lines, respectively. Based 
on the formula log2(Num), there were, on average, 28 
cell divisions for the WT lines and 27 for the ΔmutS lines be
tween 2 adjacent transfers.

DNA Extraction, Library Construction, and Genome 
Sequencing

After the last transfer, we picked a single colony for each 
final MA line as well as the ancestral line for each strain 
and cultured them in the LB broth (Solarbio, Cat. No.: 
L8291) in quadruplicate overnight at 37 °C. One of the 4 
cultures was used to extract DNA with MasterPureTM 

Complete DNA and RNA Purification Kit (Lucigen, Cat 
No.: MC85200) for Illumina sequencing. Each of the re
maining 3 replicates was mixed with glycerin (10%) and 
stored at −80 °C. We constructed the short-read libraries 
of DNA that passed the concentration and quality require
ments using an optimized protocol for TruePrep® DNA 
Library Prep Kit V2 for Illumina (Vazyme, Cat. No.: 
TD501-01) and TruePrep® Index Kit V3 for Illumina 
(Vazyme, Cat. No.: TD203). After agarose gel electrophor
esis and cutting the target bands to recycle with the 
E.Z.N.A.® Gel Extraction Kit (Omega Bio-tek, Cat. No.: 
D2500-02), we obtained the libraries with insert sizes of 
about 300 bp. Then, PE150 sequencing was performed 
using 1 Illumina NovaSeq6000 sequencer at Berry 

Genomics, Beijing. For the WT and the ΔmutS final MA 
lines, we randomly chose 19 lines from each group, as 
well as their ancestors, to extract DNA and construct the li
braries for the Nanopore long-read sequencing. The stan
dardized mixed libraries were pooled and loaded into 1 
flow cell (R9.4) and sequenced with 1 Oxford Nanopore 
PromethION sequencer (Benagen, Wuhan, China). Then, 
the electrical signals were converted into DNA bases by 
Guppy (v-5.0.16). Next, the adapters were removed from 
the data and the data was filtered with Q ≥ 7. After quality 
control, about 1–3 Gbp sequences for each sample were fi
nally obtained (supplementary table S4, Supplementary 
Material online).

BPS and Indel Mutation Analysis

For the Illumina sequencing data, the 2 × 150 bp 
paired-end reads were first trimmed by Fastp (v-0.20) 
(Chen et al. 2018) to remove adapters and low-quality 
reads. After trimming, the reads were mapped to the refer
ence genome (NC_000913.3), using the “mem” function 
in Burrows–Wheeler Aligner (v-0.7.17) (Li and Durbin 
2009). The mapped reads were in SAM format and trans
formed into BAM format by SAMtools (v-1.9) (Li et al. 
2009). Duplicate reads were removed by the function 
MarkDuplicates of picard-tools (v-2.20.1). Based on the lo
cal re-assembly feature, we used the HaplotypeCaller of 
Genome Analysis Toolkit (GATK, v-4.1.2.0) (McKenna 
et al. 2010; DePristo et al. 2011; Van der Auwera et al. 
2013) with standard hard filters to call the BPSs and indels. 
Therefore, 13 lines were removed because of low coverage 
(less than 20×), cross-contamination of sequenced lines 
(randomly removing 1 line if 2 lines shared exactly the 
same BPS in the same site), or carrying mutations on repair 
genes (supplementary table S1, Supplementary Material
online), and eventually 67 WT and 37 ΔmutS MA lines 
were used in the final analyses. All the indels were manually 
curated with the Integrative Genomics Viewer (IGV, 
v-2.8.2) (Thorvaldsdóttir et al. 2012).

Using the filtered BPSs and indels, we calculated the mu
tation rate μ with the formula:

μ =
m

􏽐n
1 N × T 

Here, n was the number of MA lines. The number of muta
tions for all MA lines, the analyzed sites for each MA line, 
and the total cell divisions during the transfers were de
noted by m, N, and T, respectively. The context-dependent 
mutation rates were analyzed as in our previous study (Long 
et al. 2015).

E. coli Genome Simulation

In order to evaluate the SV detection pipelines and based on 
the reference genome of E. coli MG1655 (NC_000913.3), 
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we established 4 groups of simulated genomes, each carrying 
known SVs of only 1 type: insertions, deletions, tandem dupli
cations, or inversions. Each group contained 3 simulated gen
omes with 100, 200, or 500 known SVs. This was done using 
RSVSim (v-1.34.0) (Bartenhagen and Dugas 2013), a 
Bioconductor package in R. In addition, we also randomly si
mulated BPSs and indels near the breakpoints of these SVs, 
mainly distributed in the range of 100 bp upstream or down
stream of the breakpoints. The percentages of BPSs and indels 
out of the total number of SVs within a breakpoint’s flanking 
regions are 0.1% and 0.05%, respectively, and the maximum 
length of indels is 20 bp. According to RSVSim’s built-in algo
rithms, 1 flanking region can contain at most 1 indel and 
breakpoints’coordinates of SVs in the genome follow a uni
form distribution.

The SV lengths in the simulated genomes of the 4 groups 
were set from 50 to 10,000 bp, with SV length distribution 
of 70% 50–1,000 bp, 20% 1,001–5,000 bp, and 10% 
5,001–100,000 bp. Within the range, the length of each 
specific SV is randomly generated in R (v-4.1.2) (R Core 
Team 2016). The details and statistics of the introduced 
SVs of the simulated genomes are in supplementary 
figure S3 and supplementary tables S24 and S25, 
Supplementary Material online. Supplementary files 
S2–S13, Supplementary Material online, are simulated gen
omes, with detailed information in supplementary table 
S26, Supplementary Material online.

Besides, we also simulated a 0-variant genome and its short- 
and long-read sequencing data, and the methods as well as 
parameters were consistent with those described above.

Simulation of Illumina Short Reads and Nanopore Long 
Reads

ART (v-2.5.8) (Huang et al. 2011) simulated the short-read 
data sets using the above simulated genomes with known 
SVs. These data sets were composed of 2 × 150 bp Illumina 
short reads with a mean sequencing depth of about 100×, 
and the mean and standard deviation for the insert sizes 
were 300 and 50 bp.

The long-read data sets were simulated by Badread 
(v-0.2.0) (Wick 2019) with the following recommended para
meters for the best simulation data set: –quantity 200 ×  
–error_model nanopore2020 –qscore_model ideal –glitches 
0,0,0 –random_read 0 –chimeras 0 –junk_reads 0 –identity 
95,100,4 –start_adapter_seq“” –end_adapter_seq “”. With 
these, we acquired the FASTQ files with high-quality scores.

The simulated short-read and long-read data sets were 
uploaded to the NCBI SRA database (BioProject Number: 
PRJNA856428).

Testing the Pipelines by Detecting SVs in the Simulated 
Data Sets

Using the simulated data sets, we applied different analytical 
pipelines to identify SVs. We first performed quality controls 

on the simulated data sets. For the Illumina data sets, the 
process for obtaining the BAM files is the same as the above 
BPS and Indel Mutation Analysis section. For the Nanopore 
data sets, they were firstly filtered by NanoFilt (v-2.8.0) (De 
Coster et al. 2018) to keep the reads with quality score 
Q ≥ 7 and then corrected by canu (v-1.7.1) (Koren et al. 
2017). Then, the corrected reads were mapped to the refer
ence genome NC_000913.3 using NGMLR(v-0.2.7) 
(Sedlazeck et al. 2018). Next, the SAM format files were con
verted into BAM files and sorted using SAMtools.

The pipelines with breseq (v-0.35.1) (Barrick et al. 2014; 
Deatherage and Barrick 2014) and Manta (v-1.6.0) (Chen 
et al. 2016) were used to identify SVs using the preprocessed 
short-read data sets. breseq (Barrick et al. 2014; Deatherage 
and Barrick 2014) was a versatile tool that could mainly 
detect IS-mediated insertions and deletions of haploid 
microbial genomes. Given that breseq could not detect 
non–IS-mediated insertions and the random simulation 
introduces IS-mediated insertions at low frequency (Barrick 
et al. 2014), we only used breseq for insertion and deletion 
calling. breseq was used to map the clean short reads to 
the reference genome by BOWTIE2, then implement the 
split-read alignment methods, reconstruct the candidate 
junction sequences into a new reference, and map again 
to predict and annotate mutations after correcting and ana
lyzing with the default parameters. As breseq is mainly used 
for detecting deletions and insertions mediated by mobile 
elements, we also used Manta to complement the limitations 
in detecting other types of SVs (insertions, tandem duplica
tions, and inversions). Manta performs excellently in detect
ing SVs in human genomes based on short reads (Cameron 
et al. 2019).

The other pipeline was based on Sniffles (v-1.0.12) 
(Sedlazeck et al. 2018). We required the number of sup
porting reads ≥ 10 and the SV length ≥ 50 bp, with default 
values for other parameters. In addition, we also used 
NanoVar (v-1.3.8) (Tham et al. 2020) and NanoSV 
(v-1.2.4) (Cretu Stancu et al. 2017) to detect the SVs in 
the simulated data sets and then compared these results 
with Sniffles to choose the best-performance pipeline.

To evaluate the detection efficiency of each pipeline, we 
introduced 3 criteria: sensitivity, precision, and F1 score. 
The calculations of these values follow the confusion matrix 
rule. After calculating the true positives (TP), false negatives 
(FN), and false positives (FP), we used the formula as fol
lows:

sensitivity =
TP

TP + FN 

precision =
TP

TP + FP 

F1 score = 2 ∗
sensitivity ∗precision
sensitivity + precision 
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The True Positives needed to meet 3 conditions: 1) the type 
of SVs must be the same as the simulated one, 2) the start 
position for called SV is the same as or within ±30 bp of the 
corresponding simulated SV, and 3) the SV length differs 
from the simulated one by no more than 30%. The error 
distribution associated with these cutoff lines is also shown 
in supplementary table S27, Supplementary Material on
line. Failure to meet any condition would be considered 
as 1 false-positive SV.

The Detection of SVs in the Real Data from MA Lines

To identify SVs in the short-read sequenced MA lines 
(supplementary tables S2 and S3, Supplementary Material
online), we used breseq to detect IS-mediated insertions 
and deletions and retained all types of SVs called by 
Manta as a complement for the breseq results. The SVs, 
called by the 2 software, were combined as the candidate 
calls. For the Nanopore-sequenced MA lines 
(supplementary table S4, Supplementary Material online), 
the same Sniffles parameters as those used on the simu
lated data sets were performed. We subsequently elimi
nated the SVs existed in the ancestors from the candidate 
SV calls. Then, SVs detected in 3 or more MA lines in 
each set (either long- or short-read) were also removed.

PCR Validation of Candidate SVs

Before Sanger sequencing, we filtered out hundreds of 
false positives in MA lines that were also present in the an
cestral line (SVs were called by Sniffles if there are sequence 
difference between the ancestral genome and the refer
ence genome) and those labeled as “imprecise” by 
Sniffles (supplementary table S17, Supplementary 
Material online, FP in MA-WT and MA-ΔmutS). The SV calls 
after the above filtering were then validated by PCR, using 
Primer5.0 to design primers for each specific target region 
and BlastN (v-2.13.0) (Zhang et al. 2000) to confirm that 
primers were unique with low similarity to other nontarget 
genomic regions. All the primer sequences are shown in 
supplementary table S28, Supplementary Material online. 
The designed primers were then used for PCR amplification 
and Sanger sequencing (Tsingke Biotechnology Co., Ltd., 
Qingdao, China). One SV was considered to be true positive 
if the Sanger sequences and the candidate call show the 
consistent SV type, start point difference <100 bp, and 
length difference <30%, which is set based on the error 
distribution (supplementary table S27, Supplementary 
Material online).

Statistics and Plotting

Statistical tests were done in R (v-4.1.2) and JMP Pro 
(v-16.0.0), and plottings were done in ggplot2 (Wickham 
2019) and OriginPro (v-2022).

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online (http://www.gbe.oxfordjournals.org/).
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Barker CS, Prüß BM, Matsumura P. 2004. Increased motility of 

Escherichia coli by insertion sequence element integration into 
the regulatory region of the flhD operon. J Bacteriol. 186(22): 
7529–7537.

Barrick JE, et al. 2014. Identifying structural variation in haploid micro
bial genomes from short-read resequencing data using breseq. 
BMC Genomics. 15(1):1039.

Bartenhagen C, Dugas M. 2013. RSVSim: an R/Bioconductor package 
for the simulation of structural variations. Bioinformatics 29(13): 
1679–1681.

Bobay L-M, Ochman H. 2017. The evolution of bacterial genome archi
tecture. Front Genet. 8:72.

Cameron DL, Di Stefano L, Papenfuss AT. 2019. Comprehensive evalu
ation and characterisation of short read general-purpose structural 
variant calling software. Nat Commun. 10(1):3240.

Chan YF, et al. 2010. Adaptive evolution of pelvic reduction in stickle
backs by recurrent deletion of a Pitx1 enhancer. Science 
327(5963):302–305.

Chawla HS, et al. 2021. Long-read sequencing reveals widespread in
tragenic structural variants in a recent allopolyploid crop plant. 
Plant Biotechnol J. 19(2):240–250.

Chen X, et al. 2016. Manta: rapid detection of structural variants and 
indels for germline and cancer sequencing applications. 
Bioinformatics 32(8):1220–1222.

Chen L, et al. 2021. The long-term genetic stability and individual spe
cificity of the human gut microbiome. Cell 184(9):2302–2315. 
e12.

Chen L, et al. 2022. Short- and long-read metagenomics expand indi
vidualized structural variations in gut microbiomes. Nat Commun. 
13(1):3175.

Chen S, Zhou Y, Chen Y, Gu J. 2018. . Fastp: an ultra-fast all-in-one 
FASTQ preprocessor. Bioinformatics 34(17):i884–i890.

Genome Biol. Evol. 15(6) https://doi.org/10.1093/gbe/evad106 Advance Access publication 9 June 2023                                       11

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad106#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad106#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad106#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad106#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad106#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad106#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad106#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad106#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad106#supplementary-data
http://www.gbe.oxfordjournals.org/
https://doi.org/10.1093/gbe/evad106


Zhou et al.                                                                                                                                                                       GBE

Consuegra J, et al. 2021. Insertion-sequence-mediated mutations 
both promote and constrain evolvability during a long-term experi
ment with bacteria. Nat Commun. 12(1):980.

Cretu Stancu M, et al. 2017. Mapping and phasing of structural vari
ation in patient genomes using nanopore sequencing. Nat 
Commun. 8(1):1326.

Damkiær S, Yang L, Molin S, Jelsbak L. 2013. Evolutionary remodeling 
of global regulatory networks during long-term bacterial adapta
tion to human hosts. Proc Natl Acad Sci U S A. 110(19): 
7766–7771.

Danneels B, Pinto-Carbó M, Carlier A. 2018. Patterns of nucleotide de
letion and insertion inferred from bacterial pseudogenes. Genome 
Biol Evol. 10(7):1792–1802.

Deatherage DE, Barrick JE. 2014. Identification of mutations in 
laboratory-evolved microbes from next-generation sequencing 
data using breseq. In: Sun L and Shou W, editors. Engineering and 
analyzing multicellular systems. New York: Springer. p. 165–188.

Deatherage DE, Traverse CC, Wolf LN, Barrick JE. 2015. Detecting rare 
structural variation in evolving microbial populations from new se
quence junctions using breseq. Front Genet. 5:468.

De Coster W, D’hert S, Schultz DT, Cruts M, Van Broeckhoven C. 2018. 
Nanopack: visualizing and processing long-read sequencing data. 
Bioinformatics 34(15):2666–2669.

DePristo MA, et al. 2011. A framework for variation discovery and 
genotyping using next-generation DNA sequencing data. Nat 
Genet. 43(5):491–498.

Dierckxsens N, Li T, Vermeesch JR, Xie Z. 2021. A benchmark of struc
tural variation detection by long reads through a realistic simulated 
model. Genome Biol. 22(1):342.

Emerson J, Cardoso-Moreira M, Borevitz JO, Long M. 2008. Natural se
lection shapes genome-wide patterns of copy-number polymorph
ism in Drosophila melanogaster. Science 320(5883):1629–1631.

Escaramís G, Docampo E, Rabionet R. 2015. A decade of structural var
iants: description, history and methods to detect structural vari
ation. Briefings Funct Genomics. 14(5):305–314.

Fan X, Abbott TE, Larson D, Chen K. 2014. Breakdancer: identification 
of genomic structural variation from paired-end read mapping. 
Curr Protoc Bioinf. 45(1):15.6. 1–15.6. 11.

Foster PL. 2006. Methods for determining spontaneous mutation 
rates. Methods Enzymol. 409:195–213.

Foster PL, Lee H, Popodi E, Townes JP, Tang H. 2015. Determinants of 
spontaneous mutation in the bacterium Escherichia coli as revealed 
by whole-genome sequencing. Proc Natl Acad Sci U S A. 112(44): 
E5990–E5999.

Gregory TR. 2004. Insertion–deletion biases and the evolution of gen
ome size. Gene 324:15–34.

Hämälä T, et al. 2021. Genomic structural variants constrain and facili
tate adaptation in natural populations of Theobroma cacao, the 
chocolate tree. Proc Natl Acad Sci U S A. 118(35):e2102914118.

He Y, et al. 2019. Long-read assembly of the Chinese rhesus macaque 
genome and identification of ape-specific structural variants. Nat 
Commun. 10(1):4233.

Huang W, Li L, Myers JR, Marth GT. 2011. ART: a next-generation se
quencing read simulator. Bioinformatics 28(4):593–594.

Huddleston J, et al. 2017. Discovery and genotyping of structural vari
ation from long-read haploid genome sequence data. Genome 
Res. 27(5):677–685.

Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. 2012. De novo as
sembly and genotyping of variants using colored De Bruijn graphs. 
Nat Genet. 44(2):226–232.

Iskow RC, Gokcumen O, Lee C. 2012. Exploring the role of copy num
ber variants in human adaptation. Trends Genet. 28(6):245–257.

Iyer RR, Pluciennik A, Burdett V, Modrich PL. 2006. DNA mismatch re
pair: functions and mechanisms. Chem Rev. 106(2):302–323.

Jiang T, et al. 2021. Long-read sequencing settings for efficient struc
tural variation detection based on comprehensive evaluation. BMC 
Bioinf. 22(1):552.

Kondrashov FA. 2012. Gene duplication as a mechanism of genomic 
adaptation to a changing environment. Proc Royal Soc B. 
279(1749):5048–5057.

Konrad M, et al. 1996. Large homozygous deletions of the 2q13 re
gion are a major cause of juvenile nephronophthisis. Hum Mol 
Genet. 5(3):367–371.

Korbel JO, et al. 2007. Paired-end mapping reveals extensive structural 
variation in the human genome. Science 318(5849):420–426.

Koren S, et al. 2017. Canu: scalable and accurate long-read assembly 
via adaptive k-mer weighting and repeat separation. Genome Res. 
27(5):722–736.

Kosugi S, et al. 2019. Comprehensive evaluation of structural variation 
detection algorithms for whole genome sequencing. Genome Biol. 
20(1):117.

Kucukyildirim S, et al. 2016. The rate and spectrum of spontaneous 
mutations in Mycobacterium smegmatis, a bacterium naturally de
void of the postreplicative mismatch repair pathway. G3 6(7): 
2157–2163.

Kuo C-H, Ochman H. 2009. Deletional bias across the three domains of 
life. Genome Biol Evol. 1:145–152.

Layer RM, Chiang C, Quinlan AR, Hall IM. 2014. LUMPY: a probabilistic 
framework for structural variant discovery. Genome Biol. 15(6):R84..

Lee H, Doak TG, Popodi E, Foster PL, Tang H. 2016. Insertion sequence- 
caused large-scale rearrangements in the genome of Escherichia 
coli. Nucleic Acids Res. 44(15):7109–7119.

Lee H, Popodi E, Foster PL, Tang H. 2014. Detection of structural var
iants involving repetitive regions in the reference genome. J 
Comput Biol. 21(3):219–233.

Lee H, Popodi E, Tang H, Foster PL. 2012. Rate and molecular spectrum 
of spontaneous mutations in the bacterium Escherichia coli as de
termined by whole-genome sequencing. Proc Natl Acad Sci U S A. 
109(41):E2774–E2783.

Lesack K, Mariene GM, Andersen EC, Wasmuth JD. 2022. Different 
structural variant prediction tools yield considerably different re
sults in Caenorhabditis elegans. PLoS One. 17(12):e0278424.

Li H, et al. 2009. The sequence alignment/map format and SAMtools. 
Bioinformatics 25(16):2078–2079.

Li H, Durbin R. 2009. Fast and accurate short read alignment with 
Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760.

Lieberman TD, et al. 2011. Parallel bacterial evolution within multiple 
patients identifies candidate pathogenicity genes. Nat Genet. 
43(12):1275–1280.

Liu Y, et al. 2020. Comparison of multiple algorithms to reliably detect 
structural variants in pears. BMC Genomics. 21(1):61.

Loewenthal G, et al. 2021. A probabilistic model for indel evolution: 
differentiating insertions from deletions. Mol Biol Evol. 38(12): 
5769–5781.

Long H, et al. 2015. Mutation rate, spectrum, topology, and context- 
dependency in the DNA mismatch repair-deficient Pseudomonas 
fluorescens ATCC948. Genome Biol Evol. 7(1):262–271.

Long H, et al. 2016. Antibiotic treatment enhances the genome-wide 
mutation rate of target cells. Proc Natl Acad Sci U S A. 113(18): 
E2498–E2505.

Long H, et al. 2018b. Evolutionary determinants of genome-wide nu
cleotide composition. Nat Ecol Evol. 2(2):237–240.

Long H, Miller SF, Williams E, Lynch M. 2018a. Specificity of the DNA 
mismatch repair system (MMR) and mutagenesis bias in bacteria. 
Mol Biol Evol. 35(10):2414–2421.

Luan M-W, Zhang X-M, Zhu Z-B, Chen Y, Xie S-Q. 2020. Evaluating 
structural variation detection tools for long-read sequencing data
sets in Saccharomyces cerevisiae. Front Genet. 11:159.

12 Genome Biol. Evol. 15(6) https://doi.org/10.1093/gbe/evad106 Advance Access publication 9 June 2023

https://doi.org/10.1093/gbe/evad106


de novo Structural Variations of Escherichia coli Detected by Nanopore Long-Read Sequencing                                        GBE

Lupski JR, et al. 1991. DNA duplication associated with 
Charcot-Marie-Tooth disease type 1A. Cell 66(2):219–232.

Lynch M, et al. 2016. Genetic drift, selection and the evolution of the 
mutation rate. Nat Rev Genet. 17(11):704–714.

Ma Z, et al. 2021. High-quality genome assembly and resequencing of 
modern cotton cultivars provide resources for crop improvement. 
Nat Genet. 53(9):1385–1391.

Mahmoud M, et al. 2019. Structural variant calling: the long and the 
short of it. Genome Biol. 20(1):246.

Mantere T, Kersten S, Hoischen A. 2019. Long-read sequencing emer
ging in medical genetics. Front Genet. 10:426.

Martinez-Vaz BM, Xie Y, Pan W, Khodursky AB. 2005. Genome-wide 
localization of mobile elements: experimental, statistical and bio
logical considerations. BMC Genomics. 6(1):81.

McKenna A, et al. 2010. The Genome Analysis Toolkit: a MapReduce 
framework for analyzing next-generation DNA sequencing data. 
Genome Res. 20(9):1297–1303.

Merhej V, Royer-Carenzi M, Pontarotti P, Raoult D. 2009. Massive 
comparative genomic analysis reveals convergent evolution of spe
cialized bacteria. Biol Direct. 4(1):13.

Merker JD, et al. 2018. Long-read genome sequencing identifies causal 
structural variation in a Mendelian disease. Genet Med. 20(1): 
159–163.

Okazaki Y, Nakano SI, Toyoda A, Tamaki H. 2022. Long-read-resolved, 
ecosystem-wide exploration of nucleotide and structural microdi
versity of lake bacterioplankton genomes. mSystems 7(4): 
e00433-22.

Ooka T, et al. 2009. Inference of the impact of insertion sequence (IS) 
elements on bacterial genome diversification through analysis of 
small-size structural polymorphisms in Escherichia coli O157 gen
omes. Genome Res. 19(10):1809–1816.

Pan J, et al. 2022. Rates of mutations and transcript errors in the food
borne pathogen Salmonella enterica subsp. enterica. Mol Biol Evol. 
39(4):msac081.

Pan J, Williams E, Sung W, Lynch M, Long H. 2021. The insect-killing 
bacterium Photorhabdus luminescens has the lowest mutation 
rate among bacteria. Mar Life Sci Technol. 3(1):20–27.

Pang AW, et al. 2010. Towards a comprehensive structural variation 
map of an individual human genome. Genome Biol. 11(5):R52.

Parrish N, Sudakov B, Eskin E. 2013. Genome reassembly with high- 
throughput sequencing data. BMC Genomics. 14 Suppl 1(Suppl 
1):S8.

Putze J, et al. 2009. Genetic structure and distribution of the colibactin 
genomic island among members of the family Enterobacteriaceae. 
Infect Immun. 77(11):4696–4703.

Raeside C, et al. 2014. Large chromosomal rearrangements during a 
long-term evolution experiment with Escherichia coli. mBio 5(5): 
e01377-14.

Rausch T, et al. 2012. DELLY: structural variant discovery by integrated 
paired-end and split-read analysis. Bioinformatics 28(18): 
i333–i339.

R Core Team. 2016. R: a language and environment for statistical com
puting. Vienna, Austria.

Sakamoto Y, Zaha S, Suzuki Y, Seki M, Suzuki A. 2021. Application of 
long-read sequencing to the detection of structural variants in hu
man cancer genomes. Comput Struct Biotechnol J. 19: 
4207–4216.

Sawyer SA, et al. 1987. Distribution and abundance of insertion se
quences among natural isolates of Escherichia coli. Genetics 
115(1):51–63.

Schmid M, et al. 2018. Pushing the limits of de novo genome assembly 
for complex prokaryotic genomes harboring very long, near iden
tical repeats. Nucleic Acids Res. 46(17):8953–8965..

Schnetz K, Rak B. 1992. IS5: a mobile enhancer of transcription in 
Escherichia coli. Proc Natl Acad Sci U S A. 89(4):1244–1248.

Sedlazeck FJ, et al. 2018. Accurate detection of complex structural var
iations using single-molecule sequencing. Nat Methods. 15(6): 
461–468.

Sousa A, Bourgard C, Wahl LM, Gordo I. 2013. Rates of transposition 
in Escherichia coli. Biol Lett. 9(6):20130838.

Strauch E, Beutin L. 2006. Imprecise excision of insertion element IS 5 
from the fliC gene contributes to flagellar diversity in Escherichia 
coli. FEMS Microbiol Lett. 256(2):195–202.

Strauss C, Long H, Patterson CE, Te R, Lynch M. 2017. Genome-wide 
mutation rate response to pH change in the coral reef pathogen 
Vibrio shilonii AK1. mBio 8(4):e01021-17.

Tham CY, et al. 2020. Nanovar: accurate characterization of patients’ 
genomic structural variants using low-depth nanopore sequen
cing. Genome Biol. 21(1):56.

Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2012. Integrative 
Genomics Viewer (IGV): high-performance genomics data visual
ization and exploration. Briefings Bioinf. 14(2):178–192.

Tian S, Yan H, Klee EW, Kalmbach M, Slager SL. 2018. Comparative 
analysis of de novo assemblers for variation discovery in personal 
genomes. Briefings Bioinf. 19(5):893–904.

Tincher C, Long H, Behringer M, Walker N, Lynch M. 2017. The 
glyphosate-based herbicide roundup does not elevate genome- 
wide mutagenesis of Escherichia coli. G3 7(10):3331–3335.

Vandecraen J, Chandler M, Aertsen A, Van Houdt R. 2017. The impact 
of insertion sequences on bacterial genome plasticity and adapt
ability. Crit Rev Microbiol. 43(6):709–730..

Van der Auwera GA, et al. 2013. From FastQ data to high-confidence 
variant calls: the Genome Analysis Toolkit best practices pipeline. 
Curr Protoc Bioinf. 43(1):11.10. 1–11.10. 33.

Wang D, et al. 2021. Characterization of gut microbial structural var
iations as determinants of human bile acid metabolism. Cell Host 
Microbe. 29(12):1802–1814. e5.

Wang X, Wood TK. 2011. IS5 inserts upstream of the master motility 
operon flhDC in a quasi-Lamarckian way. ISME J. 5(9):1517–1525.

Wick RR. 2019. Badread: simulation of error-prone long reads. J Open 
Res Softw. 4(36):1316.

Wickham H. 2009. Ggplot2: elegant graphics for data analysis. 2nd ed. 
New York: Springer.

Wong KH, Levy-Sakin M, Kwok P-Y. 2018. De novo human genome 
assemblies reveal spectrum of alternative haplotypes in diverse po
pulations. Nat Commun. 9(1):3040.

Wu K, et al. 2021. Unexpected discovery of hypermutator phenotype 
sounds the alarm for quality control strains. Genome Biol Evol. 
13(8):evab148.

Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. 2009. Pindel: a pattern 
growth approach to detect break points of large deletions and me
dium sized insertions from paired-end short reads. Bioinformatics 
25(21):2865–2871.

Zeevi D, et al. 2019. Structural variation in the gut microbiome associ
ates with host health. Nature 568(7750):43–48.

Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for 
aligning DNA sequences. J Comput Biol. 7(1-2):203–214.

Zhao H, et al. 2021a. Analysis of 427 genomes reveals moso bamboo 
population structure and genetic basis of property traits. Nat 
Commun. 12(1):5466.

Zhao X, et al. 2021b. Expectations and blind spots for structural vari
ation detection from long-read assemblies and short-read genome 
sequencing technologies. Am J Hum Genet. 108(5):919–928.

Associate editor: Charles Baer

Genome Biol. Evol. 15(6) https://doi.org/10.1093/gbe/evad106 Advance Access publication 9 June 2023                                       13

https://doi.org/10.1093/gbe/evad106

	De Novo Structural Variations of Escherichia coli Detected by Nanopore Long-Read Sequencing
	Introduction
	Results
	Evaluating the SV Detection Pipelines with Simulated Data
	Genomic SV Rate of E. coli Based on Nanopore and/or Illumina Sequencing
	Features of de novo SVs of E. coli

	Discussion
	Materials and Methods
	Strains and MA Procedures
	DNA Extraction, Library Construction, and Genome Sequencing
	BPS and Indel Mutation Analysis
	E. coli Genome Simulation
	Simulation of Illumina Short Reads and Nanopore Long Reads
	Testing the Pipelines by Detecting SVs in the Simulated Data Sets
	The Detection of SVs in the Real Data from MA Lines
	PCR Validation of Candidate SVs
	Statistics and Plotting

	Supplementary Material
	Acknowledgments
	Data Availability
	Literature Cited




